Startseite Existence and uniqueness of solution for the nonlinear Brusselator system with Robin boundary conditions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Existence and uniqueness of solution for the nonlinear Brusselator system with Robin boundary conditions

  • Ghassan A. Al-Juaifri und Akil J. Harfash EMAIL logo
Veröffentlicht/Copyright: 20. November 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The system of Brusselator-type reaction-diffusion equations (RDs) on open bounded convex domains 𝒟 ⊂ ℝ d ( d ≀ 3 ) with Robin boundary conditions (Rbcs) has been mathematically analyzed. The Faedo–Galerkin approach is used to demonstrate the global existence and uniqueness of a weak solution to the system. The weak solution’s higher regularity findings are constructed under more regular conditions on the initial data. In addition, continuous dependence on the initial conditions has been proved.

MSC 2020: 35A02; 35A01; 35K57

References

[1] R. A. Adams and J. J. F. Fournier, Sobolev Spaces, 2nd ed., Pure Appl. Math. (Amsterdam) 140, Elsevier/Academic Press, Amsterdam, 2003. Suche in Google Scholar

[2] L. Aharouch, M. Kbiri Alaoui, G. Di Fazio and M. Altanji, On a class of nonlinear elliptic problems with obstacle, Georgian Math. J. 28 (2021), no. 5, 665–675. 10.1515/gmj-2020-2085Suche in Google Scholar

[3] G. A. Al-Juaifri and A. J. Harfash, Analysis of a nonlinear reaction-diffusion system of the Fitzhugh–Nagumo type with Robin boundary conditions, Ric. Mat. 72 (2023), no. 1, 335–357. 10.1007/s11587-022-00711-7Suche in Google Scholar

[4] A. S. Al-Ofl, Analysis of complex nonlinear reaction-diffusion equations, Ph.D. thesis, Durham University, 2008. Suche in Google Scholar

[5] A. Ayoujil and A. Ourraoui, On a Robin type problem involving p ⁱ ( x ) -Laplacian operator, Georgian Math. J. 29 (2022), no. 1, 13–23. 10.1515/gmj-2021-2114Suche in Google Scholar

[6] F. Bahidi, B. Krichen and B. Mefteh, Existence results for a system of nonlinear operator equations and block operator matrices in locally convex spaces, Georgian Math. J. 29 (2022), no. 2, 179–192. 10.1515/gmj-2021-2127Suche in Google Scholar

[7] R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology: Volume 2: Functional and Variational Methods, Springer, Berlin, 1999. Suche in Google Scholar

[8] M. El Ouaarabi, C. Allalou and S. Melliani, On a class of nonlinear degenerate elliptic equations in weighted Sobolev spaces, Georgian Math. J. 30 (2023), no. 1, 81–94. 10.1515/gmj-2022-2191Suche in Google Scholar

[9] L. C. Evans, Partial Differential Equations, Grad. Stud. Math. 19, American Mathematical Society, Providence, 1998. Suche in Google Scholar

[10] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Monogr. Stud. Math. 24, Pitman, Boston, 1985. Suche in Google Scholar

[11] P. Hartman, Ordinary Differential Equations, John Wiley & Sons, New York, 1964. Suche in Google Scholar

[12] S. Heidari and A. Razani, Infinitely many solutions for nonlocal elliptic systems in Orlicz–Sobolev spaces, Georgian Math. J. 29 (2022), no. 1, 45–54. 10.1515/gmj-2021-2110Suche in Google Scholar

[13] S. Heidarkhani, G. Caristi, G. A. Afrouzi and S. Moradi, Existence results for a non-homogeneous Neumann problem through Orlicz–Sobolev spaces, Georgian Math. J. 28 (2021), no. 2, 241–253. 10.1515/gmj-2019-2054Suche in Google Scholar

[14] S. Heidarkhani, G. Caristi and M. Ferrara, Perturbed Kirchhoff-type Neumann problems in Orlicz–Sobolev spaces, Comput. Math. Appl. 71 (2016), no. 10, 2008–2019. 10.1016/j.camwa.2016.03.019Suche in Google Scholar

[15] S. Heidarkhani, A. Ghobadi and M. Avci, Multiple solutions for a class of p ⁱ ( x ) -Kirchhoff-type equations, Appl. Math. E-Notes 22 (2022), 160–168. Suche in Google Scholar

[16] S. Heidarkhani, S. Moradi and M. Avci, Critical points approaches to a nonlocal elliptic problem driven by p ⁱ ( x ) -biharmonic operator, Georgian Math. J. 29 (2022), no. 1, 55–69. 10.1515/gmj-2021-2115Suche in Google Scholar

[17] R. M. Jena, S. Chakraverty, H. Rezazadeh and D. Domiri Ganji, On the solution of time-fractional dynamical model of Brusselator reaction-diffusion system arising in chemical reactions, Math. Methods Appl. Sci. 43 (2020), no. 7, 3903–3913. 10.1002/mma.6141Suche in Google Scholar

[18] R. Kamocki, On generalized fractional integration by parts formulas and their applications to boundary value problems, Georgian Math. J. 28 (2021), no. 1, 99–108. 10.1515/gmj-2019-2006Suche in Google Scholar

[19] S. Kharibegashvili and B. Midodashvili, The boundary value problem for one class of higher-order nonlinear partial differential equations, Georgian Math. J. 29 (2022), no. 3, 387–395. 10.1515/gmj-2021-2139Suche in Google Scholar

[20] Y. Li, Hopf bifurcations in general systems of Brusselator type, Nonlinear Anal. Real World Appl. 28 (2016), 32–47. 10.1016/j.nonrwa.2015.09.004Suche in Google Scholar

[21] F.-F. Liao, S. Heidarkhani and S. Moradi, Multiple solutions for nonlocal elliptic problems driven by p ⁱ ( x ) -biharmonic operator, AIMS Math. 6 (2021), no. 4, 4156–4172. 10.3934/math.2021246Suche in Google Scholar

[22] J.-L. Lions, Quelques méthodes de résolution des problÚmes aux limites non linéaires, Dunod, Paris, 1969. Suche in Google Scholar

[23] D. T. Luyen and L. T. H. Hanh, Infinitely many solutions for perturbed Δ ⁱ γ -Laplace equations, Georgian Math. J. 29 (2022), no. 6, 863–882. 10.1515/gmj-2022-2179Suche in Google Scholar

[24] M. Makvand Chaharlang and A. Razani, Two weak solutions for some Kirchhoff-type problem with Neumann boundary condition, Georgian Math. J. 28 (2021), no. 3, 429–438. 10.1515/gmj-2019-2077Suche in Google Scholar

[25] M. Naceri, Anisotropic nonlinear weighted elliptic equations with variable exponents, Georgian Math. J. 30 (2023), no. 2, 277–285. 10.1515/gmj-2022-2216Suche in Google Scholar

[26] D. Natroshvili and T. Tsertsvadze, On an alternative approach for mixed boundary value problems for the Laplace equation, Georgian Math. J. 29 (2022), no. 6, 883–895. 10.1515/gmj-2022-2177Suche in Google Scholar

[27] I. Prigogine and R. Lefever, Symmetry breaking instabilities in dissipative systems. II, J. Chem. Phys. 48 (1968), no. 4, 1695–1700. 10.1063/1.1668896Suche in Google Scholar

[28] I. Prigogine and G. Nicolis, Self-organisation in nonequilibrium systems: Towards a dynamics of complexity, Bifurcation Analysis, Reidel, Dordrecht (1985), 3–12. 10.1007/978-94-009-6239-2_1Suche in Google Scholar

[29] P. C. Rech, Nonlinear dynamics of two discrete-time versions of the continuous-time Brusselator model, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 29 (2019), no. 10, Article ID 1950142. 10.1142/S0218127419501426Suche in Google Scholar

[30] J. C. Robinson, Infinite-Dimensional Dynamical Systems, Cambridge Texts Appl. Math., Cambridge University, Cambridge, 2001. Suche in Google Scholar

[31] J. C. Robinson, Infinite-Dimensional Dynamical Systems. An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Cambridge Texts Appl. Math., Cambridge University, Cambridge, 2001. Suche in Google Scholar

[32] J. A. Sherratt, A comparison of periodic travelling wave generation by Robin and Dirichlet boundary conditions in oscillatory reaction-diffusion equations, IMA J. Appl. Math. 73 (2008), no. 5, 759–781. 10.1093/imamat/hxn015Suche in Google Scholar

[33] J. J. Tyson, Some further studies of nonlinear oscillations in chemical systems, J. Chem. Phys. 58 (1973), no. 9, 3919–3930. 10.1063/1.1679748Suche in Google Scholar

[34] A. ĆœenĂ­ĆĄek, Nonlinear Elliptic and Evolution Problems and Their Finite Element Approximations, Comput. Math. Appl., Academic Press, London, 1990. Suche in Google Scholar

[35] T. L. Ć»ynda, J. J. Sadowski, P. M. WĂłjcicki and S. G. Krantz, Reproducing kernels and minimal solutions of elliptic equations, Georgian Math. J. 30 (2023), no. 2, 303–320. 10.1515/gmj-2022-2202Suche in Google Scholar

Received: 2023-02-01
Revised: 2023-06-08
Accepted: 2023-06-13
Published Online: 2023-11-20
Published in Print: 2024-06-01

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 17.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/gmj-2023-2091/html
Button zum nach oben scrollen