Startseite The Arzelà–Ascoli theorem by means of ideal convergence
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The Arzelà–Ascoli theorem by means of ideal convergence

  • Emre Taş EMAIL logo und Tugba Yurdakadim
Veröffentlicht/Copyright: 30. November 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, using the concept of ideal convergence, which extends the idea of ordinary convergence and statistical convergence, we are concerned with the I-uniform convergence and the I-pointwise convergence of sequences of functions defined on a set of real numbers D. We present the Arzelà–Ascoli theorem by means of ideal convergence and also the relationship between I-equicontinuity and I-continuity for a family of functions.

MSC 2010: 40A30; 40A35

Acknowledgements

The authors wish to thank the referee for several helpful suggestions that have improved the exposition of these results.

References

[1] M. Balcerzak, K. Dems and A. Komisarski, Statistical convergence and ideal convergence for sequences of functions, J. Math. Anal. Appl. 328 (2007), no. 1, 715–729. 10.1016/j.jmaa.2006.05.040Suche in Google Scholar

[2] M. Balcerzak, S. Gła̧b and A. Wachowicz, Qualitative properties of ideal convergent subsequences and rearrangements, Acta Math. Hungar. 150 (2016), no. 2, 312–323. 10.1007/s10474-016-0644-8Suche in Google Scholar

[3] R. G. Bartle, Elements of Real Analysis, John Wiley & Sons, New York, 1964. Suche in Google Scholar

[4] J. Connor, The statistical and strong p-Cesàro convergence of sequences, Analysis 8 (1988), no. 1–2, 47–63. 10.1524/anly.1988.8.12.47Suche in Google Scholar

[5] J. Connor, Two valued measures and summability, Analysis 10 (1990), no. 4, 373–385. 10.1524/anly.1990.10.4.373Suche in Google Scholar

[6] K. Dems, On I-Cauchy sequences, Real Anal. Exchange 30 (2004/05), no. 1, 123–128. 10.14321/realanalexch.30.1.0123Suche in Google Scholar

[7] O. Duman and C. Orhan, μ-statistically convergent function sequences, Czechoslovak Math. J. 54(129) (2004), no. 2, 413–422. 10.1023/B:CMAJ.0000042380.31622.39Suche in Google Scholar

[8] H. Fast, Sur la convergence statistique, Colloq.Math. 2 (1951), 241–244. 10.4064/cm-2-3-4-241-244Suche in Google Scholar

[9] J. A. Fridy, Statistical limit points, Proc. Amer. Math. Soc. 118 (1993), no. 4, 1187–1192. 10.1090/S0002-9939-1993-1181163-6Suche in Google Scholar

[10] J. A. Fridy and H. I. Miller, A matrix characterization of statistical convergence, Analysis 11 (1991), no. 1, 59–66. 10.1524/anly.1991.11.1.59Suche in Google Scholar

[11] J. A. Fridy and C. Orhan, Statistical limit superior and limit inferior, Proc. Amer. Math. Soc. 125 (1997), no. 12, 3625–3631. 10.1090/S0002-9939-97-04000-8Suche in Google Scholar

[12] J. W. Green and F. A. Valentine, On the Arzelà–Ascoli theorem, Math. Mag. 34 (1961), no. 4, 199–202. 10.1080/0025570X.1961.11975217Suche in Google Scholar

[13] E. Kolk, Matrix summability of statistically convergent sequences, Analysis 13 (1993), no. 1–2, 77–83. 10.1524/anly.1993.13.12.77Suche in Google Scholar

[14] A. Komisarski, Pointwise I-convergence and I-convergence in measure of sequences of functions, J. Math. Anal. Appl. 340 (2008), no. 2, 770–779. 10.1016/j.jmaa.2007.09.016Suche in Google Scholar

[15] P. Kostyrko, T. Šalát and W. Wilczyński, I-convergence, Real Anal. Exchange 26 (2000/01), no. 2, 669–685. 10.2307/44154069Suche in Google Scholar

[16] H. I. Miller, A measure theoretical subsequence characterization of statistical convergence, Trans. Amer. Math. Soc. 347 (1995), no. 5, 1811–1819. 10.1090/S0002-9947-1995-1260176-6Suche in Google Scholar

[17] I. Niven and H. S. Zuckerman, An Introduction to the Theory of Numbers, 4th ed., John Wiley & Sons, New York, 1980. Suche in Google Scholar

[18] H. L. Royden, Real Analysis, 3rd ed., Macmillan Publishing, New York, 1988. Suche in Google Scholar

[19] W. Wilczyński, Statistical convergence of sequences of functions, Real Anal. Exchange 25 (1999), no. 1, 49–49. 10.2307/44153029Suche in Google Scholar

Received: 2016-04-07
Revised: 2016-12-29
Accepted: 2017-06-26
Published Online: 2017-11-30
Published in Print: 2018-09-01

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 7.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/gmj-2017-0052/html?lang=de
Button zum nach oben scrollen