Home On the difference between a Vitali–Bernstein selector and a partial Vitali–Bernstein selector
Article
Licensed
Unlicensed Requires Authentication

On the difference between a Vitali–Bernstein selector and a partial Vitali–Bernstein selector

  • Alexander Kharazishvili EMAIL logo
Published/Copyright: August 30, 2016
Become an author with De Gruyter Brill

Abstract

It is shown that the difference between a Vitali–Bernstein selector and a partial Vitali–Bernstein selector can be of Lebesgue measure zero and of first Baire category. This result gives an answer to a question posed by G. Lazou.

MSC 2010: 28A05; 28D05; 03E25

References

[1] Bernstein F., Zur Theorie der trigonometrischen Reihe, Leipz. Ber. 60 (1908), 325–338. Search in Google Scholar

[2] Cichon J., Kharazishvili A. and Weglorz B., Subsets of the Real Line, Wydawnictwo Uniwersytetu Lodzkiego, Lodz, 1995. Search in Google Scholar

[3] Hamel G., Eine Basis aller Zahlen und die unstetigen Lösungen der Funktionalgleichung: f(x+y)=f(x)+f(y), Math. Ann. 60 (1905), 459–462. 10.1007/BF01457624Search in Google Scholar

[4] Kechris A. S., Classical Descriptive Set Theory, Grad. Texts in Math. 156, Springer, New York, 1995. 10.1007/978-1-4612-4190-4Search in Google Scholar

[5] Kharazishvili A. B., Nonmeasurable Sets and Functions, North-Holland Math. Stud. 195, Elsevier Science, Amsterdam, 2004. Search in Google Scholar

[6] Kharazishvili A. B., Topics in Measure Theory and Real Analysis, Atlantis Stud. Math. 2, Atlantis Press, Paris, 2009. 10.2991/978-94-91216-36-7Search in Google Scholar

[7] Kharazishvili A. B., Measurability properties of Vitali sets, Amer. Math. Monthly 118 (2011), no. 8, 693–703. 10.1201/b17298-11Search in Google Scholar

[8] Kuczma M., An Introduction to the Theory of Functional Equations and Inequalities. Cauchy’s Equation and Jensen’s Inequality, Pr. Nauk. Uniw. Śla̧skiego Katowicach 489, Uniwersytet Śla̧ski, Warsaw, 1985. Search in Google Scholar

[9] Kuratowski K., Topology, Vol. I, Academic Press, New York, 1966. Search in Google Scholar

[10] Miller A. W., Special subsets of the real line, Handbook of Set-Theoretic Topology, North-Holland, Amsterdam (1984), 201–233. 10.1016/B978-0-444-86580-9.50008-2Search in Google Scholar

[11] Morgan, II J. C., Point Set Theory, Pure Appl. Math, 131, Marcel Dekker, New York, 1990. Search in Google Scholar

[12] Oxtoby J. C., Measure and Category. A Survey of the Analogies Between Topological and Measure Spaces, Grad. Texts in Math. 2, Springer, New York, 1971. 10.1007/978-1-4615-9964-7Search in Google Scholar

[13] Raisonnier J., A mathematical proof of S. Shelah’s theorem on the measure problem and related results, Israel J. Math. 48 (1984), no. 1, 48–56. 10.1007/BF02760523Search in Google Scholar

[14] Shelah S., Can you take Solovay’s inaccessible away?, Israel J. Math. 48 (1984), no. 1, 1–47. 10.1007/BF02760522Search in Google Scholar

[15] Sierpiński W., Sur la question de la mesurabilité de la base de M. Hamel, Fund. Math. 1 (1920), 105–111. 10.4064/fm-1-1-105-111Search in Google Scholar

[16] Solovay R. M., A model of set-theory in which every set of reals is Lebesgue measurable, Ann. of Math. (2) 92 (1970), 1–56. 10.1142/9789812564894_0025Search in Google Scholar

[17] Vitali G., Sul Problema Della Misura dei Gruppi di Punti di una Retta. Nota, Gamberini e Parmeggiani, Bologna, 1905. Search in Google Scholar

Received: 2015-1-8
Accepted: 2015-6-3
Published Online: 2016-8-30
Published in Print: 2016-9-1

© 2016 by De Gruyter

Downloaded on 1.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/gmj-2016-0036/pdf
Scroll to top button