Startseite A Tauberian theorem for the product of Abel and Cesàro summability methods
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A Tauberian theorem for the product of Abel and Cesàro summability methods

  • Yılmaz Erdem und İbrahi̇m Çanak EMAIL logo
Veröffentlicht/Copyright: 23. Juni 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, we prove a Tauberian theorem for the product of the Abel method and the Cesàro method of order α, which improves some classical Tauberian theorems for the Abel and Cesàro summability methods.

MSC 2010: 40E05; 40G05; 40G10

References

[1] Abel N. H., Recherches sur la série 1+m1x+m(m-1)1.2x2+, J. Reine Angew. Math. 1 (1826), 311–339. Suche in Google Scholar

[2] Amir A., On a converse of Abel’s theorem, Proc. Amer. Math. Soc. 3 (1952), no. 2, 244–256. 10.1090/S0002-9939-1952-0047153-5Suche in Google Scholar

[3] Boos J., Classical and Modern Methods in Summability, Oxford Math. Monogr., Oxford University Press, Oxford, 2000. 10.1093/oso/9780198501657.001.0001Suche in Google Scholar

[4] Borwein D., Theorems on some methods of summability, Quart. J. Math. Oxford Ser. (2) 9 (1958), 310–316. 10.1093/qmath/9.1.310Suche in Google Scholar

[5] Çanak İ. and Erdem Y., On Tauberian theorems for (A)(C,α) summability method, Appl. Math. Comput. 218 (2011), no. 6, 2829–2836. 10.1016/j.amc.2011.08.026Suche in Google Scholar

[6] Çanak İ., Erdem Y. and Totur Ü., Some Tauberian theorems for (A)(C,α) summability method, Math. Comput. Model. 52 (2010), no. 5–6, 738–743. 10.1016/j.mcm.2010.05.001Suche in Google Scholar

[7] Erdem Y. and Çanak İ., A Tauberian theorem for (A)(C,α) summability, Comput. Math. Appl. 60 (2010), no. 11, 2920–2925. 10.1016/j.camwa.2010.09.047Suche in Google Scholar

[8] Hardy G. H., Theorems relating to the summability and convergence of slowly oscillating series, Proc. Lond. Math. Soc. (2) 8 (1910), 301–320. 10.1112/plms/s2-8.1.301Suche in Google Scholar

[9] Hardy G. H. and Littlewood J. E., Tauberian theorems concerning power and Dirichlet’s series whose coefficients are positive, Proc. Lond. Math. Soc. (2) 13 (1914), 174–191. 10.1112/plms/s2-13.1.174Suche in Google Scholar

[10] Kogbetliantz E., Sur les séries absolument sommables par la méthode des moyennes arihtmétiques, Bulletin Sci. Math. (2) 49 (1925), 234–251. Suche in Google Scholar

[11] Kogbetliantz E., Sommation des séries et intégrals divergents par les moyennes arithmétiques et typiques, Memorial Sci. Math. 51 (1931), 1–84. Suche in Google Scholar

[12] Littlewood J. E., The converse of Abel’s theorem on power series, Proc. Lond. Math. Soc. (2) 9 (1911), 434–448. 10.1112/plms/s2-9.1.434Suche in Google Scholar

[13] Lord R. D., On some relations between the Abel, Borel and Cesàro methods of summations, Proc. Lond. Math. Soc. (2) 38 (1935), no. 2, 241–246. 10.1112/plms/s2-38.1.241Suche in Google Scholar

[14] Pati T., On Tauberian theorems, Sequences, Summability and Fourier Analysis, Narosa Publishing House, New Delhi (2005), 84–96. Suche in Google Scholar

[15] Szàsz O., Generalization of two theorems of Hardy and Littlewood on power series, Duke Math. J. 1 (1935), no. 1, 105–111. 10.1215/S0012-7094-35-00111-9Suche in Google Scholar

[16] Tauber A., Ein Satz der Theorie der unendlichen Reihen, Monatsh. Math. 8 (1897), 273–277. 10.1007/BF01696278Suche in Google Scholar

Received: 2014-5-11
Accepted: 2015-1-30
Published Online: 2016-6-23
Published in Print: 2016-9-1

© 2016 by De Gruyter

Heruntergeladen am 1.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/gmj-2016-0024/pdf
Button zum nach oben scrollen