Startseite The spaces of bilinear multipliers of weighted Lorentz type modulation spaces
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The spaces of bilinear multipliers of weighted Lorentz type modulation spaces

  • Ahmet Turan Gürkanlı EMAIL logo , Öznur Kulak und Ayşe Sandıkçı
Veröffentlicht/Copyright: 3. März 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Fix a nonzero window g𝒮(n), a weight function w on 2n and 1p,q. The weighted Lorentz type modulation space M(p,q,w)(n) consists of all tempered distributions f𝒮(n) such that the short time Fourier transform Vgf is in the weighted Lorentz space L(p,q,wdμ)(2n). The norm on M(p,q,w)(n) is fM(p,q,w)=Vgfpq,w. This space was firstly defined and some of its properties were investigated for the unweighted case by Gürkanlı in [9] and generalized to the weighted case by Sandıkçı and Gürkanlı in [16]. Let 1<p1,p2<, 1q1,q2<, 1p3,q3, ω1,ω2 be polynomial weights and ω3 be a weight function on 2n. In the present paper, we define the bilinear multiplier operator from M(p1,q1,ω1)(n)×M(p2,q2,ω2)(n) to M(p3,q3,ω3)(n) in the following way. Assume that m(ξ,η) is a bounded function on 2n, and define

Bm(f,g)(x)=nnf^(ξ)g^(η)m(ξ,η)e2πiξ+η,x𝑑ξ𝑑ηfor all f,g𝒮(n).

The function m is said to be a bilinear multiplier on n of type (p1,q1,ω1;p2,q2,ω2;p3,q3,ω3) if Bm is the bounded bilinear operator from M(p1,q1,ω1)(n)×M(p2,q2,ω2)(n) to M(p3,q3,ω3)(n). We denote by BM(p1,q1,ω1;p2,q2,ω2)(n) the space of all bilinear multipliers of type (p1,q1,ω1;p2,q2,ω2;p3,q3,ω3), and define m(p1,q1,ω1;p2,q2,ω2;p3,q3,ω3)=Bm. We discuss the necessary and sufficient conditions for Bm to be bounded. We investigate the properties of this space and we give some examples.

MSC 2010: 42B15; 42B35

References

[1] Blasco O., Notes on the spaces of bilinear multipliers, Rev. Un. Mat. Argentina 50 (2009), no. 2, 23–37. Suche in Google Scholar

[2] Chung H.-M., Hunt R. A. and Kurtz D. S., The Hardy–Littlewood maximal function on L(p,q) spaces with weights, Indiana Univ. Math. J. 31 (1982), no. 1, 109–120. 10.1512/iumj.1982.31.31012Suche in Google Scholar

[3] Coifman R. R. and Meyer Y., Fourier analysis of multilinear convolutions, Calderón’s theorem, and analysis of Lipschitz curves, Euclidean Harmonic Analysis, Lecture Notes in Math. 779, Springer, Berlin (1980), 104–122. 10.1007/BFb0087669Suche in Google Scholar

[4] Duyar C. and Gürkanlı A. T., Multipliers and relative completion in weighted Lorentz spaces, Acta Math. Sci. Ser. B Engl. Ed. 23 (2003), no. 4, 467–476. 10.1016/S0252-9602(17)30490-3Suche in Google Scholar

[5] Feichtinger H. G., Modulation spaces on locally compact Abelian groups, technical report, University of Vienna, 1983. Suche in Google Scholar

[6] Gilbert J. E. and Nahmot A. R., Boundedness of bilinear operators with nonsmooth symbols, Math. Res. Lett. 7 (2000), no. 5–6, 767–778. 10.4310/MRL.2000.v7.n6.a9Suche in Google Scholar

[7] Gilbert J. E. and Nahmot A. R., Bilinear operators with non-smooth symbol. I, J. Fourier Anal. Appl. 7 (2001), no. 5, 435–467. 10.1007/BF02511220Suche in Google Scholar

[8] Gröchenig K., Foundations of Time-Frequency Analysis, Appl. Numer. Harmon. Anal., Birkhäuser, Boston, 2001. 10.1007/978-1-4612-0003-1Suche in Google Scholar

[9] Gürkanlı A. T., Time frequency analysis and multipliers of the spaces M(p,q)(𝐑d) and S(p,q)(𝐑d), J. Math. Kyoto Univ. 46 (2006), no. 3, 595–616. 10.1215/kjm/1250281751Suche in Google Scholar

[10] Hunt R. A. and Kurtz D. S., The Hardy–Littlewood maximal function on L(p,1), Indiana Univ. Math. J. 32 (1983), no. 1, 155–158. 10.1512/iumj.1983.32.32012Suche in Google Scholar

[11] Kulak Ö. and Gürkanlı A. T., Bilinear multipliers of weighted Lebesgue spaces and variable exponent Lebesgue spaces, J. Inequal. Appl. 2013 (2013), Article ID 259. 10.1186/1029-242X-2013-259Suche in Google Scholar

[12] Lacey M. T., On the bilinear Hilbert transform, Doc. Math. 2 (1998), 647–656. 10.4171/dms/1-2/62Suche in Google Scholar

[13] Lacey M. and Thiele C., Lp estimates on the bilinear Hilbert transform for 2<p<, Ann. of Math. (2) 146 (1997), no. 3, 693–724. 10.2307/2952458Suche in Google Scholar

[14] O’Neil R., Convolution operators and L(p,q) spaces, Duke Math. J. 30 (1963), 129–142. 10.1215/S0012-7094-63-03015-1Suche in Google Scholar

[15] Sandıkçı A., Continuity of Wigner-type operators on Lorentz spaces and Lorentz mixed normed modulation spaces, Turkish J. Math. 38 (2014), no. 4, 728–745. 10.3906/mat-1311-43Suche in Google Scholar

[16] Sandıkçı A. and Gürkanlı A. T., Gabor analysis of the spaces M(p,q,w)(d) and S(p,q,r,w,ω)(d), Acta Math. Sci. Ser. B Engl. Ed. 31 (2011), no. 1, 141–158. 10.1016/S0252-9602(11)60216-6Suche in Google Scholar

Received: 2014-8-11
Accepted: 2015-1-9
Published Online: 2016-3-3
Published in Print: 2016-9-1

© 2016 by De Gruyter

Heruntergeladen am 1.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/gmj-2016-0003/pdf
Button zum nach oben scrollen