Startseite A wideband metamaterial cross polarizer conversion for C and X band applications
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A wideband metamaterial cross polarizer conversion for C and X band applications

  • Prakash Ranjan , Chetan Barde ORCID logo EMAIL logo , Arvind Choubey , Rashmi Sinha , Anubhav Jain und Komal Roy
Veröffentlicht/Copyright: 14. Oktober 2021
Veröffentlichen auch Sie bei De Gruyter Brill
Frequenz
Aus der Zeitschrift Frequenz Band 76 Heft 1-2

Abstract

This article present wideband Metamaterial Cross Polarizer (MCP) structure for C and X band applications. The proposed structure consists of wheel shaped associated with meander line and triangular shaped patches having overall dimension of 18 × 18 mm. The anisotropic design patchis a single metallic layer (Cu) placed at the top of dielectric substrate FR-4 and backed by a ground also consists of metal layer (Cu). A wideband Polarization Conversion Ratio (PCR) above 0.8 magnitudes is achieved having bandwidth of 8.1 GHz ranging from 3.43 to 11.53 GHz and it works for C (4–8 GHz) and X (8–12 GHz) band approximately. The bandwidth of PCR at Full Width Half Maxima (FWHM) achieved is 8.24 GHz (3.60–11.84 GHz). Three distinct PCR peaks are observed at 4.2, 5.98, and 9.46 GHz with PCR magnitudes at 91.07, 96.39, and 99.76% respectively. Analysis of polarization conversion phenomena at these three frequencies is described with the help of current and electric field distribution. The proposed anisotropic structure is examined at different angles under normal and oblique incident. The simulation is performed through ANSYS HFSS (19.1), fabrication is done on substrate FR-4 using printed circuit board (PCB). The simulated and measured curves obtained for reflection coefficient and PCR are similar to one another with minute difference due to fabrication tolerances.


Corresponding author: Chetan Barde, Indian Institute of Information Technology Bhagalpur, Bhagalpur, India, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] D. R. Smith, J. P. Willie, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett., vol. 84, no. 18, p. 4184, 2000, https://doi.org/10.1103/physrevlett.84.4184.Suche in Google Scholar PubMed

[2] A. Rajput and K. V. Srivastava, “Design of a two-dimensional metamaterial cloak with minimum scattering using a quadratic transformation function,” J. Appl. Phys., vol. 116, no. 12, p. 124501, 2014, https://doi.org/10.1063/1.4893480.Suche in Google Scholar

[3] C. Barde, A. Choubey, and R. Sinha, “A set square design metamaterial absorber for X-band applications,” J. Electromagn. Waves Appl., vol. 34, no. 10, pp. 1430–1443, 2020, https://doi.org/10.1080/09205071.2019.1654930.Suche in Google Scholar

[4] P. Ranjan, A. Choubey, S. K. Mahto, R. Sinha, and C. Barde, “A novel ultrathin wideband metamaterial absorber for X-band applications,” J. Electromagn. Waves Appl., vol. 33, no. 17, pp. 2341–2353, 2019. https://doi.org/10.1080/09205071.2019.1681299.Suche in Google Scholar

[5] A. Alu and N. Engheta, “Plasmonic and metamaterial cloaking: physical mechanisms and potentials,” J. Opt. Pure Appl. Opt., vol. 10, no. 9, 2008, Art no. 093002, https://doi.org/10.1088/1464-4258/10/9/093002.Suche in Google Scholar

[6] V. A. Podolskiy and E. E. Narimanov, “Near-sighted superlens,” Opt. Lett., vol. 30, no. 1, pp. 75–77, 2005, https://doi.org/10.1364/ol.30.000075.Suche in Google Scholar PubMed

[7] A. Ali and Z. Hu, “Metamaterial resonator based wave propagation notch for ultrawideband filter applications,” IEEE Antenn. Wireless Propag. Lett., vol. 7, pp. 210–212, 2008, https://doi.org/10.1109/lawp.2008.920964.Suche in Google Scholar

[8] J. J. Yang, M. Huang, H. Tang., et al., “Metamaterial sensors,” Int. J. Antenn. Propag., vol. 2013, 2013. https://doi.org/10.1155/2013/637270.Suche in Google Scholar

[9] C. Barde, P. Ranjan, A. Choubey, et al., “A compact wideband metamaterial absorber for Ku band applications,” J. Mater. Sci. Mater. Electron., vol. 31, no. 19, pp. 1–9, 2020. https://doi.org/10.1007/s10854-020-04245-2.Suche in Google Scholar

[10] Y. Dong and T. Itoh, “Metamaterial-based antennas,” Proc. IEEE, vol. 100, no. 7, pp. 2271–2285, 2012, https://doi.org/10.1109/jproc.2012.2187631.Suche in Google Scholar

[11] J. H. Shi, Z. Zhu, H. F. Ma, et. al. “Tunable symmetric and asymmetric resonances in an asymmetrical split-ring metamaterial,” J. Appl. Phys., vol. 112, no. 7, 2012, Art no. 073522, https://doi.org/10.1063/1.4757961.Suche in Google Scholar

[12] Y. Zhao, M. A. Belkin, and A. Alú, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun., vol. 3, no. 1, pp. 1–7, 2012, https://doi.org/10.1038/ncomms1877.Suche in Google Scholar PubMed

[13] Y.-H. Wang, Z.-G. Dong, and S.-Y. Lei, “Tri-layer anisotropic metamaterial for unidirectional circular polarizer,” in Conference on Lasers and Electro-Optics/Pacific Rim, Optical Society of America, 2017.10.1109/CLEOPR.2017.8118619Suche in Google Scholar

[14] D. K. Sharma, “A novel cross-polarizer converter formed by twisted F-shaped chiral metamaterial,” Electromagnetics, vol. 39, no. 6, pp. 407–416, 2019, https://doi.org/10.1080/02726343.2019.1641655.Suche in Google Scholar

[15] J. Y. Chin, M. Lu, and T. J. Cui, “Metamaterial polarizers by electric-field-coupled resonators,” Appl. Phys. Lett., vol. 93, no. 25, p. 251903, 2008, https://doi.org/10.1063/1.3054161.Suche in Google Scholar

[16] J. H. Shi, Q. C. Shi, Y. X. Li, et al., “Dual-polarity metamaterial circular polarizer based on giant extrinsic chirality,” Sci. Rep., vol. 5, p. 16666, 2015. https://doi.org/10.1038/srep16666.Suche in Google Scholar PubMed PubMed Central

[17] Z. Zhang, X. Cao, J. Gao, et al., “Broadband metamaterial reflectors for polarization manipulation based on cross/ring resonators,” Radioengineering, vol. 25, no. 3, pp. 436–441, 2016. https://doi.org/10.13164/re.2016.0436.Suche in Google Scholar

[18] S. Bhattacharyya and K. V. Srivastava, “Triple band polarization-independent ultra-thin metamaterial absorber using electric field-driven LC resonator,” J. Appl. Phys., vol. 115, no. 6, 2014, Art no. 064508, https://doi.org/10.1063/1.4865273.Suche in Google Scholar

[19] C. Barde, A. Choubey, and R. Sinha, “Wide band metamaterial absorber for Ku and K band applications,” J. Appl. Phys., vol. 126, no. 17, p. 175104, 2019, https://doi.org/10.1063/1.5119311.Suche in Google Scholar

[20] H. Chen, H. Ma, J. Wang, et al., “A wideband deflected reflection based on multiple resonances,” Appl. Phys. A, vol. 120, no. 1, pp. 287–291, 2015. https://doi.org/10.1007/s00339-015-9186-0.Suche in Google Scholar

[21] Z. I. Johnson, E. R. Zinser, A. Coe, et al., “Niche partitioning among Prochlorococcus ecotypes along ocean-scale environmental gradients,” Science, vol. 311, no. 5768, pp. 1737–1740, 2006. https://doi.org/10.1126/science.1118052.Suche in Google Scholar PubMed

[22] X. Huang, B. Xiao, L. Guo, et al., “Triple-band linear and circular reflective polarizer based on E-shaped metamaterial,” J. Opt., vol. 16, no. 12, p. 125101, 2014. https://doi.org/10.1088/2040-8978/16/12/125101.Suche in Google Scholar

[23] M. I. Khan, Q. Fraz, and F. A. Tahir, “Ultra-wideband cross polarization conversion metasurface insensitive to incidence angle,” J. Appl. Phys., vol. 121, no. 4, 2017, Art no. 045103, https://doi.org/10.1063/1.4974849.Suche in Google Scholar

[24] A. Rajput and K. V. Srivastava, “Bandwidth enhancement of transformation optics-based cloak with reduced parameters,” Appl. Phys. A, vol. 120, no. 2, pp. 663–668, 2015, https://doi.org/10.1007/s00339-015-9235-8.Suche in Google Scholar

[25] Q. Zheng, C. Guo, H. Li, et al., “Wideband and high efficiency reflective polarization rotator based on metasurface,” J. Electromagn. Waves Appl., vol. 32, no. 3, pp. 265–273, 2018. https://doi.org/10.1080/09205071.2017.1377640.Suche in Google Scholar

[26] B.-Q. Lin, X. Y. Da, J. L. Wu, et al., “Ultra-wideband and high-efficiency cross polarization converter based on anisotropic metasurface,” Microw. Opt. Technol. Lett., vol. 58, no. 10, pp. 2402–2405, 2016. https://doi.org/10.1002/mop.30056.Suche in Google Scholar

[27] L. Zhang, P. Zhou, H. Lu, et al., “Ultra-thin reflective metamaterial polarization rotator based on multiple plasmon resonances,” IEEE Antenn. Wireless Propag. Lett., vol. 14, pp. 1157–1160, 2015. https://doi.org/10.1109/lawp.2015.2393376.Suche in Google Scholar

[28] Z. L. Mei, X. M. Ma, C. Lu, et al., “High-efficiency and wide-bandwidth linear polarization converter based on double U-shaped metasurface,” AIP Adv., vol. 7, no. 12, p. 125323, 2017. https://doi.org/10.1063/1.5003446.Suche in Google Scholar

Received: 2021-02-03
Accepted: 2021-10-01
Published Online: 2021-10-14
Published in Print: 2022-01-27

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 13.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/freq-2021-0033/html
Button zum nach oben scrollen