Abstract
Conical Terahertz DRA (dielectric resonator antenna) have been designed and investigated at terahertz spectrum i.e. 10 THz. Lower terahertz frequency band is useful for high data speed communication and upper band is used for optical sensors and free space wireless communications. Novelty in this work is to open up research in. terahertz. A unique geometry based dual band terahertz DRA with mathematical formulations has been proposed. The comprehensive analysis in terahertz regime have been worked out with S11, VSWR, radiation pattern and efficiency using conical TDRA. The conical terahertz DRA is designed at 10 THz frequency with 4.9 dBi, gain with bore sight radiation pattern. The equivalent circuit of conical terahertz DRA have been evaluated for dynamic impedance showing frequency dependence nature.
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: None declared.
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
[1] A. A. Kisk, Y. Yin, and A. W. Glisson, “Conical DRA for wireless applications,” IEEE J., vol. 29, 2002. https://doi.org/10.1109/TAP.2002.1003382. 10.1109/TAP.2002.1003382Suche in Google Scholar
[2] V. Gaurav, S. Y. Rajveer, and V. S. Pandey, “Conical shape DRA for ultra wide band applications,” in IEEE Conference, International conference on computing, communication and automation. Noida, India, 2015.Suche in Google Scholar
[3] S. Kiran, T. Khan, and BKK, “Concal DRA with Improved Gain and BW for X Band,” in European Microwave Conference (EuMC), 47th European Microwave conference 2017 Nuremberg, Germany, 2017.Suche in Google Scholar
[4] L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photon., vol. 5, no. 2, pp. 83–90, 2011, https://doi.org/10.1038/nphoton.2010.237.10.1038/nphoton.2010.237Suche in Google Scholar
[5] P. Biagioni, J.-S. Huang, and B. Hecht, “Nano antennas for visible and infrared radiation,” Rep. Prog. Phys., vol. 75, 2012. https://doi.org/10.1088/0034-4885/75/2/024402. 10.1088/0034-4885/75/2/024402Suche in Google Scholar PubMed
[6] L. Zou, W. Withayachumnankul, C. Shah, et al.., “Dielectric resonator nano antennas at visible frequencies,” Opt. Express, vol. 21, no. 1, pp. 1344–1352, 2013, https://doi.org/10.1364/oe.21.001344.10.1364/OE.21.001344Suche in Google Scholar PubMed
[7] G. N. Malheiros-Silveira, G. S. Wiederhecker, and H. E. Hernández Figueroa, “Dielectric resonator antenna for applications in nano photonics,” Opt. Express, vol. 21, no. 1, pp. 1234–1239, 2013, https://doi.org/10.1364/oe.21.001234.10.1364/OE.21.001234Suche in Google Scholar PubMed
[8] K. M. Luk and K. W. Leung, Dielectric Resonator Antennas, England, Research Studies Press LTD, 2003.Suche in Google Scholar
[9] C. Balanis, Antenna Theory: Analysis and Design, 3rd ed. Wiley Inter science, Hoboken, New Jersey, 2005.Suche in Google Scholar
[10] A. A. Kishk and Y. M. M. Antar, “Dielectric resonator antennas,” in Antenna Engineering Handbook, John L. Volakis, 4th ed., New York.Suche in Google Scholar
[11] A. Petosa, Dielectric Resonator Antennas Hand Book, Artech House, London, 2007.Suche in Google Scholar
[12] R. K. Mongia and P. Bhartia, “Dielectric resonator antennas—are view and general design relations for resonant frequency and bandwidth,” Int. J. Microwave Millimeter-Wave Comput. Aided Eng., vol. 4, no. 3, pp. 230–247, 1994, https://doi.org/10.1002/mmce.4570040304.10.1002/mmce.4570040304Suche in Google Scholar
[13] Y. Zhao, N. Engheta, and A. Alù, “Effects of shape and loading of optical nano antennas on their sensitivity and radiation properties,” J. Opt. Soc. Am., vol. B28, no. 5, pp. 1266–1274, 2011, https://doi.org/10.1364/josab.28.001266.10.1364/JOSAB.28.001266Suche in Google Scholar
[14] S. A. Maier, Plasmonic -Fundamentals and Applications, Springer, Germany, 2007.10.1007/0-387-37825-1Suche in Google Scholar
[15] E. Ozbay, “Plasmonic: merging photonics and electronics at nanoscale dimensions,” Science, vol. 311, p. 189, 2006, https://doi.org/10.1126/science.1114849.10.1126/science.1114849Suche in Google Scholar PubMed
[16] S. Fakhte, H. Oraizi, and L. Matekovits, “High gain rectangular dielectric resonator antenna using uniaxial material at fundamental mode,” IEEE Trans. Antennas Propag., vol. 65, no. 1, pp. 342–347, 2017.10.1109/TAP.2016.2627520Suche in Google Scholar
[17] S. R. Yaduvanshi and H. Parthasarathy, “Coupled solution of Boltzmann transport equation, Maxwell’s and Navier stokes equations,” Int. J. Adv. Comput. Sci. Appl., vol. 1, 2010. http://doi.org/10.20533/iji.1742.4712.2010.0046. 10.20533/iji.1742.4712.2010.0046Suche in Google Scholar
[18] R. Cicchetti, A. Faraone, E. Miozzi, R. Ravanelli, and O. Testa, “A high gain mushroom-shaped dielectric resonator antenna for wideband wireless applications,” IEEE Trans. Antennas Propag., vol. 64, no. 7, pp. 2848–2861, 2016, https://doi.org/10.1109/tap.2016.2560920.10.1109/TAP.2016.2560920Suche in Google Scholar
[19] L. Zou, W. Withayachumnankul, C. Shah, et al.., “Efficiency and scalability of dielectric resonator antennas at optical frequencies,” IEEE Photon. J., vol. 6, pp. 1–10, 2014.10.1109/JPHOT.2014.2337891Suche in Google Scholar
[20] J. D. Jackson, Classical Electrodynamics, Wiley, Hoboken, New Jersey, 1962.10.1063/1.3057859Suche in Google Scholar
[21] R. S. Yaduvanshi and H. Parthasarathy, Rectangular DRA Theory and Design, Springer, Germany, 2016.Suche in Google Scholar
[22] R. S. Yaduvanshi and V Gaurav, Nano Dielectric Resonator for 5G Applications, CRC Press, USA, 2020.10.1201/9781003029342Suche in Google Scholar
[23] A. Mehmood, O. H. Karabey, and R. Jakoby, “Dielectric resonator antenna with tilted beam,” IEEE Antennas Wireless Propag. Lett., 2016. https://doi.org/10.1109/LAWP.2016.2623765. 10.1109/LAWP.2016.2623765Suche in Google Scholar
[24] A. Bonakdarand and H. Mohseni, “Impact of optical antennas on active optoelectronic devices,” Nanoscale, vol. 6, 2014. https://doi.org/10.1039/C4NR02419B. 10.1039/C4NR02419BSuche in Google Scholar PubMed
[25] S. Fakhte, “High gain rectangular dielectric resonator antenna using uniaxial material at fundamental mode,” IEEE Trans. Antennas Propag., vol. 65, 2017. https://doi.org/10.1109/TAP.2016.2627520. 10.1109/TAP.2016.2627520Suche in Google Scholar
[26] M. Humayun and O. de Koo, Retinal Prosthesis-A Clinical Guide to Successful Implementation, Springer, Germany, 2017.10.1007/978-3-319-67260-1Suche in Google Scholar
[27] P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science, vol. 308, no. 5728, pp. 1607–1609, 2005, https://doi.org/10.1126/science.1111886.10.1126/science.1111886Suche in Google Scholar PubMed
[28] E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett., vol. 89, no. 9, 2006, Art no. 093120, https://doi.org/10.1063/1.2339286.10.1063/1.2339286Suche in Google Scholar
[29] A. Petosa and A. Ittipiboon, “Dielectric resonator antennas: a historical review and the current state of the art,” IEEE Antennas Propag. Mag., vol. 52, pp. 91–116, 2010, https://doi.org/10.1109/map.2010.5687510.10.1109/MAP.2010.5687510Suche in Google Scholar
[30] S. K. Kumar Dash, T. Khan, and A. De, “Dielectric resonator antennas: an application oriented survey,” Int. J. RF and Microwave Comput. Aided Eng., Wiley Interscience, vol. 27, no. 3, pp. 1–22, 2017. https://doi.org/10.1002/mmce.21069. 10.1002/mmce.21069Suche in Google Scholar
[31] R. K. Mongia and P. Bhartia, “Dielectric resonator antenna-a review and general design relations for resonant frequency and bandwidth,” Int. J. Microwave Millimeter Wave Comput. Aided Eng., vol. 4, pp. 230–247, 1994, https://doi.org/10.1002/mmce.4570040304.10.1002/mmce.4570040304Suche in Google Scholar
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Research Articles
- Compact and novel coupled line microstrip bandpass filter based on stepped impedance resonators for millimetre-wave communications
- Design and development of rigid coaxial line based variable stub tuner
- Design of coaxial and waveguide couplers for helix TWT
- Experimental evaluation of line-of-sight multiple input multiple output (MIMO) transmission for sub-6 GHz carrier frequencies
- Bending and SAR analysis on UWB wearable MIMO antenna for on-arm WBAN applications
- Compact cross-shaped parasitic strip based multiple-input multiple-output (MIMO) dielectric resonator antenna for ultra-wideband (UWB) applications
- A compact single element dielectric resonator MIMO antenna with low mutual coupling
- Conical dielectric resonator antenna for terahertz applications
- A multi-band planar antenna for biomedical applications
- Design and analysis of pentaband annular microstrip antenna using multiport network modeling
Artikel in diesem Heft
- Frontmatter
- Research Articles
- Compact and novel coupled line microstrip bandpass filter based on stepped impedance resonators for millimetre-wave communications
- Design and development of rigid coaxial line based variable stub tuner
- Design of coaxial and waveguide couplers for helix TWT
- Experimental evaluation of line-of-sight multiple input multiple output (MIMO) transmission for sub-6 GHz carrier frequencies
- Bending and SAR analysis on UWB wearable MIMO antenna for on-arm WBAN applications
- Compact cross-shaped parasitic strip based multiple-input multiple-output (MIMO) dielectric resonator antenna for ultra-wideband (UWB) applications
- A compact single element dielectric resonator MIMO antenna with low mutual coupling
- Conical dielectric resonator antenna for terahertz applications
- A multi-band planar antenna for biomedical applications
- Design and analysis of pentaband annular microstrip antenna using multiport network modeling