Abstract
A two-port multiple input multiple output (MIMO) dielectric resonator antenna is proposed where two orthogonally connected feed lines are combined to unite two orthogonally produced modes. The feed lines build a hybrid network. The backplane is defected by a circular defected ground structure (CDGS), which is extended by two rectangular slits placed orthogonally with the input ports. The antenna uses a single ‘H/I’-shaped dielectric resonator (DR) element. It covers frequency spectrum from 7.29 to 10.65 GHz and fulfils the international telecommunication union (ITU) (8–8.5 GHz) and Maritime Radio Navigational (8.85–9 and 9.2–9.5 GHz) application bands. The antenna offers very high port isolation (>18 dB) and diversity properties throughout the whole application band. The antenna also provides circular polarization (AR ≤ 3 dB) in the operating ranges from 8 to 8.25 GHz and 8.85 to 8.9 GHz. Simulated and measured results make clear to the antenna most suitable for MIMO operation.
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: None declared.
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
[1] A. K. Biswas, S. S. Pattanayak, and U. Chakraborty, “Evaluation of dielectric properties of colored resin plastic button to design a small MIMO antenna,” IEEE Trans. Instrum. Meas., vol. 69, pp. 9170–9177, 2020. https://doi.org/10.1109/TIM.2020.2999736.Suche in Google Scholar
[2] H. Yigit and A. Kavak, “Analytical derivation of 2 × 2 MIMO channel capacity in terms of multipath angle spread and signal strength,” Frequenz, vol. 66, pp. 97–100, 2012. https://doi.org/10.1515/freq-2012-0023.Suche in Google Scholar
[3] M. H. Reddy, D. Sheela, V. K. Parbot, and A. Sharma, “A compact metamaterial inspired UWB-MIMO fractal antenna with reduced mutual coupling,” Microsyst. Technol., vol. 43, 2020. https://doi.org/10.1007/s00542-020-05024-z.Suche in Google Scholar
[4] L. Liu, C. Liu, Z. Li, X. Yin, and Z. N. Chen, “Slit-slot line and its application to low cross-polarization slot antenna and mutual-coupling suppressed tripolarized MIMO antenna,” IEEE Trans. Antenn. Propag., vol. 67, no. 1, pp. 4–15, 2019. https://doi.org/10.1109/TAP.2018.2876166.Suche in Google Scholar
[5] S. S. Jehangir and M. S. Sharawi, “A wideband sectoral Quasi-Yagi MIMO antenna system with multibeam elements,” IEEE Trans. Antenn. Propag., vol. 67, pp. 1898–1903, 2019. https://doi.org/10.1109/TAP.2018.2889034.Suche in Google Scholar
[6] L. Zou, D. Abbott, and C. Fumeaux, “Omnidirectional cylindrical dielectric resonator antenna with dual polarization,” IEEE Antenn. Wireless Propag. Lett., vol. 11, pp. 515–518, 2012. https://doi.org/10.1109/LAWP.2012.2199277.Suche in Google Scholar
[7] S. Aqeel, S. Khan, A. A. Khan, O. Owais, J. Saleem, and M. B. Qureshi, “A compact MIMO DRA with simultaneous frequency and isolation reconfiguration,” Microw. Opt. Technol. Lett., vol. 63, pp. 336–344, 2020. https://doi.org/10.1002/mop.32587.Suche in Google Scholar
[8] J. B. Yan and J. T. Bernhard, “Design of a MIMO dielectric resonator antenna for LTE femtocell base stations,” IEEE Trans. Antenn. Propag., vol. 60, pp. 438–444, 2012. https://doi.org/10.1109/TAP.2011.2174021.Suche in Google Scholar
[9] R. Maryam, A. R. M. Jalil, A. Keshtkarc, et al.., “Suppression of mutual coupling in rectangular dielectric resonator antenna arrays using Epsilon-Negative metamaterials (ENG),” J. Electromagn. Waves Appl., vol. 33, no. 9, pp. 1211–1223, 2019. https://doi.org/10.1080/09205071.2019.1605941.Suche in Google Scholar
[10] G. Bharti, D. Kumar, A. K. Gautam, and A. Sharma, “Two-port ring-shaped dielectric resonator-based diversity radiator with dual-band and dualpolarized features,” Microw. Opt. Technol. Lett., vol. 62, no. 2, pp. 581–588, 2020. https://doi.org/10.1002/mop.32053.Suche in Google Scholar
[11] G. Das, A. Sharma, R. K. Gangwar, and M. S. Sharawi, “Compact back-to-back DRA-based four-port MIMO antenna system with bi-directional diversity,” Electron. Lett., vol. 54, no. 14, pp. 884–886, 2018. https://doi.org/10.1049/el.2018.0959.Suche in Google Scholar
[12] S. Danesh, S. K. A. Rahim, M. Abedian, and M. R. Hamid, “A compact frequency-reconfigurable dielectric resonator antenna for LTE/WWAN and WLAN applications,” IEEE Antenn. Wireless Propag. Lett., vol. 14, pp. 486–489, 2015. https://doi.org/10.1109/LAWP.2014.2369411.Suche in Google Scholar
[13] S. Banerjee and S. K. Parui, “Bandwidth improvement of substrate integrated waveguide cavity backed slot antenna with dielectric resonators,” Microsyst. Technol., vol. 26, pp. 1359–1368, 2019. https://doi.org/10.1007/s00542-019-04668-w.Suche in Google Scholar
[14] A. Petosa, Dielectric Resonator Antenna Handbook, Norwood, MA, USA, Artech House, 2007.Suche in Google Scholar
[15] M. S. Sharawi, S. K. Podilchak, M. U. Khan, and Y. M. Antar, “Dual-frequency DRA-based MIMO antenna system for wireless access points,” IET Microw. Antennas Propag., vol. 11, pp. 1174–1182, 2017. https://doi.org/10.1049/iet-map.2016.0671.Suche in Google Scholar
[16] R. Tian, V. Plicanic, B. K. Lau, et al.., “A compact six-port dielectric resonator antenna array: MIMO channel measurements and performance analysis,” IEEE Trans. Antenn. Propag., vol. 58, pp. 1369–1379, 2010. https://doi.org/10.1109/TAP.2010.2041174.Suche in Google Scholar
[17] S. F. Roslan, M. R. Kamarudin, M. Khalily, and M. H. Jamaluddin, “An MIMO rectangular dielectric resonator antenna for 4G applications,” IEEE Antenn. Wireless Propag. Lett., vol. 13, pp. 321–324, 2014. https://doi.org/10.1109/LAWP.2014.2305696.Suche in Google Scholar
[18] Y. Zhang, J. Y. Deng, M. J. Li, D. Sun, and L. X. Guo, “A MIMO dielectric resonator antenna with improved isolation for 5G mm-wave applications,” IEEE Antenn. Wireless Propag. Lett., vol. 18, pp. 747–751, 2019. https://doi.org/10.1109/LAWP.2019.2901961.Suche in Google Scholar
[19] A. K. Biswas and U. Chakraborty, “Investigation on decoupling of wide band wearable multiple-input multiple-output antenna elements using microstrip neutralization line,” Int. J. RF Microw. Computer-Aided Eng., vol. 29, no. 7, pp. 1–11, 2019, Art no. e21723. https://doi.org/10.1002/mmce.21723.Suche in Google Scholar
[20] R. K. Mongia and P. Bhartia, “Dielectric resonator antennas-a review and general design relations for resonant frequency and bandwidth,” Int. J. Microw. Millimet. Wave Comput. Aided Eng., vol. 4, pp. 230–247, 1994. https://doi.org/10.1002/mmce.4570040304.Suche in Google Scholar
[21] M. S. Sharawi, Printed MIMO Antenna Engineering, Norwood, MA, USA, Artech House, 2014.Suche in Google Scholar
[22] S. Blanch, J. Romeu, and I. Corbella, “Exact representation of antenna system diversity performance from input parameter description,” Electron. Lett., vol. 39, pp. 705–707, 2003. https://doi.org/10.1049/el:20030495.10.1049/el:20030495Suche in Google Scholar
[23] R. Chandel, A. K. Gautam, and K. Rambabu, “Tapered fed compact UWB MIMO-diversity antenna with dual band-notched characteristics,” IEEE Trans. Antenn. Propag., vol. 66, no. 4, pp. 1677–1684, 2018. https://doi.org/10.1109/TAP.2018.2803134.Suche in Google Scholar
[24] A. K. Biswas and U. Chakraborty, “Compact wearable MIMO antenna with improved port isolation for ultra-wideband applications.” IET Microw., Antennas Propag., vol. 13, no. 4, pp. 498–504, 2019. https://doi.org/10.1049/iet-map.2018.5599.Suche in Google Scholar
[25] Y. K. Choukiker, S. K. Sharma, and S. K. Behera, “Hybrid fractal shape planer monopole antenna covering multiband wireless communications with MIMO implementation for handheld mobile devices,” IEEE Trans. Antenn. Propag., vol. 62, pp. 1483–1488, 2014. https://doi.org/10.1109/TAP.2013.2295213.Suche in Google Scholar
[26] A. Iqbal, O. A. Saraereh, A. W. Ahmad, and S. Bashir, “Mutual coupling reduction using F-shaped stubs in UWB-MIMO antenna,” IEEE Access, vol. 6, pp. 2755–2759, 2018. https://doi.org/10.1109/ACCESS.2017.2785232.Suche in Google Scholar
[27] J. Nasir, M. H. Jamaluddin, M. Khalily, et al.., “A reduced size dual port MIMO DRA with high isolation for 4G applications,” Int. J. RF Microw. Computer-Aided Eng., vol. 25, pp. 495–501, 2015. https://doi.org/10.1002/mmce.20884.Suche in Google Scholar
[28] S. Ko and R. Murch, “Compact integrated diversity antenna for wireless communications,” IEEE Trans. Antenn. Propag., vol. 49, pp. 954–960, 2001. https://doi.org/10.1109/8.931154.Suche in Google Scholar
[29] A. K. Biswas and U. Chakraborty, “Complementary meander-line-inspired dielectric resonator multiple-input-multiple-output antenna for dual-band applications,” Int. J. RF Microw. Computer-Aided Eng., vol. 29, no. 12, pp. 1–12, 2019, Art no. e21970. https://doi.org/10.1002/mmce.21970.Suche in Google Scholar
[30] S. Pahadsingh and S. Sahu, “An integrated MIMO filtenna with wide band-narrow band functionality,” Int. J. Electron. Commun. AEU, vol. 110, pp. 1–11, 2019. https://doi.org/10.1016/j.aeue.2019.152862.Suche in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Research Articles
- Compact and novel coupled line microstrip bandpass filter based on stepped impedance resonators for millimetre-wave communications
- Design and development of rigid coaxial line based variable stub tuner
- Design of coaxial and waveguide couplers for helix TWT
- Experimental evaluation of line-of-sight multiple input multiple output (MIMO) transmission for sub-6 GHz carrier frequencies
- Bending and SAR analysis on UWB wearable MIMO antenna for on-arm WBAN applications
- Compact cross-shaped parasitic strip based multiple-input multiple-output (MIMO) dielectric resonator antenna for ultra-wideband (UWB) applications
- A compact single element dielectric resonator MIMO antenna with low mutual coupling
- Conical dielectric resonator antenna for terahertz applications
- A multi-band planar antenna for biomedical applications
- Design and analysis of pentaband annular microstrip antenna using multiport network modeling
Artikel in diesem Heft
- Frontmatter
- Research Articles
- Compact and novel coupled line microstrip bandpass filter based on stepped impedance resonators for millimetre-wave communications
- Design and development of rigid coaxial line based variable stub tuner
- Design of coaxial and waveguide couplers for helix TWT
- Experimental evaluation of line-of-sight multiple input multiple output (MIMO) transmission for sub-6 GHz carrier frequencies
- Bending and SAR analysis on UWB wearable MIMO antenna for on-arm WBAN applications
- Compact cross-shaped parasitic strip based multiple-input multiple-output (MIMO) dielectric resonator antenna for ultra-wideband (UWB) applications
- A compact single element dielectric resonator MIMO antenna with low mutual coupling
- Conical dielectric resonator antenna for terahertz applications
- A multi-band planar antenna for biomedical applications
- Design and analysis of pentaband annular microstrip antenna using multiport network modeling