Startseite RCS Enhancement of Dielectric Resonator Tag Using Spherical Lens
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

RCS Enhancement of Dielectric Resonator Tag Using Spherical Lens

  • Ali Alhaj Abbas EMAIL logo , Mohammed El-Absi , Ashraf Abuelhaija , Klaus Solbach und Thomas Kaiser
Veröffentlicht/Copyright: 13. Februar 2019
Veröffentlichen auch Sie bei De Gruyter Brill
Frequenz
Aus der Zeitschrift Frequenz Band 73 Heft 5-6

Abstract

The RCS of flat cylindrical Dielectric Resonators (DR) is investigated and found to be too low for an application of the resonators as tags in a novel indoor localization system at mm-wave frequencies. As a method to increase the RCS of a DR tag, we propose the combination with a constant-index spherical lens. The collimation and scattering properties of this lens type are found suitable for a combination with DRs. The optimum relative permittivity of the lens is found in the range of ϵr=1.6 to 2.8 and the optimum distance between lens surface and DR is found slightly larger than the radius of the DR. RCS enhancement is found to vary with the modes of the DR but increases approximately with the fourth power of the lens radius. However, RCS signatures become corrupted by scattering due to mismatch effects of large lenses such that the lens diameter has to be limited to 4 to 5 wavelengths with the RCS enhancement limited to about 30 to 35 dB. Simulation and experimental verification are performed at a down-scaled frequency range from 4 GHz to 7 GHz using lenses of 60 mm and 120 mm diameter made of paraffin wax.

Acknowledgment

The authors would like to acknowledge the support provided by the German Research Foundation (DFG) for the CRC/TRR 196 MARIE, Project S04.

References

[1] J. Van Bladel, “The excitation of dielectric resonators of very high permittivity,” IEEE Trans. Microw. Theory Tech., vol. 23, no. 2, pp. 208–217, Feb, 1975.10.1109/TMTT.1975.1128529Suche in Google Scholar

[2] Y. Kobayashi and S. Tanaka, “Resonant modes of a dielectric rod resonator short-circuited at both ends by parallel conducting plates,” IEEE Trans. Microw. Theory Tech., vol. 28, no. 10, pp. 1077–1085, Oct, 1980.10.1109/TMTT.1980.1130228Suche in Google Scholar

[3] D. Kajfez and P. Guillon, Dielectric Resonators. Norwood, MA: Artech House, 1986.Suche in Google Scholar

[4] R. K. Mongia, “On the accuracy of the approximate methods for analyzing cylindrical dielectric resonators,” Microwave J., vol. 34, no. 10, pp. 146–149, Feb, 1991.Suche in Google Scholar

[5] R. K. Mongia and P. Bhartia, “Dielectric resonator antennas-A review and general design relations for resonant frequency and bandwidth,” Int. J. RF Microwave Comput. Aided Eng., vol. 4, no. 3, pp. 230–247, 1994.10.1002/mmce.4570040304Suche in Google Scholar

[6] A. Petosa, A. Ittipiboon, Y. M. M. Antar, D. Roscoe, and M. Cuhaci, “Recent advances in dielectric-resonator antenna technology,” IEEE Antennas Propag. Mag., vol. 40, no. 3, pp. 35–48, Jun, 1998.10.1109/74.706069Suche in Google Scholar

[7] R. S. Yaduvanshi and H. Parthasarathy, Rectangular Dielectric Resonator Antennas. India: Springer, 2016.10.1007/978-81-322-2500-3Suche in Google Scholar

[8] J. Van Bladel, “Resonant scattering by dielectric cylinders,” Microwaves Opt. Acoust. IEE J, vol. 1, no. 2, pp. 41–50, 1977.10.1049/ij-moa.1977.0001Suche in Google Scholar

[9] R. K. Mongia, C. L. Larose, S. R. Mishra, and P. Bhartia, “Measurement of RCS of cylindrical and rectangular dielectric resonators,” Electron. Lett., vol. 28, no. 21, pp. 1953–1955, Oct, 1992.10.1049/el:19921252Suche in Google Scholar

[10] C. Mandel, B. Kubina, M. Schüßler, and R. Jakoby, “Metamaterial inspired passive chipless radio-frequency identification and wireless sensing,” Ann. Telecommun., vol. 68, no. 7–8, pp. 385–399, Aug, 2013.10.1007/s12243-013-0372-9Suche in Google Scholar

[11] B. Kubina, M. Schüßler, C. Mandel, A. Mehmood and R. Jakoby, “Wireless high-temperature sensing with a chipless tag based on a dielectric resonator antenna,” SENSORS, 2013 IEEE, pp. 1–4, 2013.10.1109/ICSENS.2013.6688181Suche in Google Scholar

[12] C. Mandel et al., “Approach for long-range frequency domain chipless RFID tags towards THz,” Smart SysTech 2016; European Conference on Smart Objects, Systems and Technologies, pp. 1–7, Jul, 2016.Suche in Google Scholar

[13] M. El-Absi, A. Abuelhaija, A. Alhaj Abbas, F. Zheng, K. Solbach, and T. Kaiser, “Chipless tags infrastructure based localization in indoor environments,” 2018 11th German Microwave Conference (GeMiC), pp. 267–270, Mar, 2018.10.23919/GEMIC.2018.8335081Suche in Google Scholar

[14] M. El-Absi, A. Alhaj Abbas, A. Abuelhaija, F. Zheng, K. Solbach, and T. Kaiser, “High-accuracy indoor localization based on chipless RFID systems at THz band,” IEEE Access, vol. 6, pp. 54355–54368, 2018.10.1109/ACCESS.2018.2871960Suche in Google Scholar

[15] A. Trubin, Lattices of Dielectric Resonators., vol. 53. Switzerland: Springer, 2015.10.1007/978-3-319-25148-6Suche in Google Scholar

[16] A. Alhaj Abbas, A. Abuelhaija, and K. Solbach, “Investigation of the transient EM scattering of a dielectric resonator,” 2018 11th German Microwave Conference (GeMiC), pp. 271–274, Mar, 2018.10.23919/GEMIC.2018.8335082Suche in Google Scholar

[17] G. Befeki and G. W. Farnell, “A homogeneous dielectric sphere as a microwave lens,” Can. J. Phys., vol. 34, no. 8, pp. 790–803, 1956.10.1139/p56-089Suche in Google Scholar

[18] H. Jasik, Antenna Engineering Handbook, ch.15. USA: McGraw Hill, 1961.Suche in Google Scholar

[19] R. C. Hansen, Microwave Scanning Antennas. V. 1. Apertures. USA: Academic Press, 1964.10.1016/B978-0-12-323901-3.50008-5Suche in Google Scholar

[20] J. Thornton and K.-C. Huang, Modern Lens Antennas for Communications Engineering, vol. 39. USA: John Wiley & Sons, 2013.10.1002/9781118345146Suche in Google Scholar

[21] S. S. Vinogradov, P. D. Smith, J. S. Kot, and N. Nikolic, “Radar cross section studies of spherical lens reflectors,” Prog. Electromagnet. Res., vol. 72, pp. 325–337, 2007. 8.10.2528/PIER07031206Suche in Google Scholar

[22] J. R. Sanford, “Analysis of spherical radar cross-section enhancers,” IEEE Trans. Microw. Theory Tech., vol. 43, no. 6, pp. 1400–1403, Jun, 1995.10.1109/22.390205Suche in Google Scholar

[23] L. Xue, H. I. Cantu, and V. F. Fusco,“Two-dimensional Luneburg lens RCS augmentation using MMIC reflection amplifier,” 2007 Loughborough Antennas and Propagation Conference, pp. 81–84, 2007.10.1109/LAPC.2007.367436Suche in Google Scholar

[24] T. A. Rhys, “The design of radially symmetric lenses,” IEEE Trans. Antennas Propag., vol. 18, no. 4, pp. 497–506, Jul, 1970.10.1109/TAP.1970.1139721Suche in Google Scholar

[25] J. Sanford, “A Luneberg-lens update,” IEEE Antennas Propag. Mag., vol. 37, no. 1, pp. 76–79, Feb, 1995.10.1109/74.370587Suche in Google Scholar

[26] K. V.Rao and P. V.Nikitin, “Theory and measurement of backscattering from RFID tags,” IEEE Antennas Propag. Mag., vol. 48, no. 6, pp. 212–218, Dec, 2006.10.1109/MAP.2006.323323Suche in Google Scholar

Received: 2018-10-29
Published Online: 2019-02-13
Published in Print: 2019-05-27

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 8.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/freq-2018-0224/pdf
Button zum nach oben scrollen