Startseite Mathematik Gabor System based on the unitary dual of the Heisenberg group
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Gabor System based on the unitary dual of the Heisenberg group

  • Santi R. Das und Radha Ramakrishnan EMAIL logo
Veröffentlicht/Copyright: 25. März 2025

Abstract

In this paper, the Gabor system based on the unitary dual of the Heisenberg group H n is introduced and a sufficient condition is obtained for the Gabor system to be a Bessel sequence for L 2 ( R , B 2 ; d κ ) using the Schrödinger representation of H n , where B 2 denotes the class of Hilbert–Schmidt operators on L 2 ( R n ) and d κ denotes the Haar measure on R . Further, a necessary and sufficient condition is provided for the Gabor system to be an orthonormal system, a Parseval frame sequence, a frame sequence and a Riesz sequence.

MSC 2020: 42C15; 43A30; 47A67

Acknowledgements

The authors profusely thank Prof. K. Parthasarathy, RIASM, for his helpful suggestions regarding the explicit calculations for the Fourier transform on R .

  1. Communicated by: Guozhen Lu

References

[1] S. Arati and R. Radha, Frames and Riesz bases for shift invariant spaces on the abstract Heisenberg group, Indag. Math. (N. S.) 30 (2019), no. 1, 106–127. 10.1016/j.indag.2018.09.001Suche in Google Scholar

[2] S. Arati and R. Radha, Orthonormality of wavelet system on the Heisenberg group, J. Math. Pures Appl. (9) 131 (2019), 171–192. 10.1016/j.matpur.2019.02.004Suche in Google Scholar

[3] S. Arati and R. Radha, Wavelet system and Muckenhoupt A 2 condition on the Heisenberg group, Colloq. Math. 158 (2019), no. 1, 59–76. 10.4064/cm7467-9-2018Suche in Google Scholar

[4] D. Barbieri, E. Hernández and V. Paternostro, Spaces invariant under unitary representations of discrete groups, J. Math. Anal. Appl. 492 (2020), no. 1, Article ID 124357. 10.1016/j.jmaa.2020.124357Suche in Google Scholar

[5] M. Bownik and K. A. Ross, The structure of translation-invariant spaces on locally compact abelian groups, J. Fourier Anal. Appl. 21 (2015), no. 4, 849–884. 10.1007/s00041-015-9390-5Suche in Google Scholar

[6] C. Cabrelli and V. Paternostro, Shift-invariant spaces on LCA groups, J. Funct. Anal. 258 (2010), no. 6, 2034–2059. 10.1016/j.jfa.2009.11.013Suche in Google Scholar

[7] O. Christensen, An Introduction to Frames and Riesz Bases, 2nd ed., Appl. Numer. Harmon. Anal., Birkhäuser/Springer, Cham, 2016. 10.1007/978-3-319-25613-9_7Suche in Google Scholar

[8] O. Christensen and S. S. Goh, Fourier-like frames on locally compact abelian groups, J. Approx. Theory 192 (2015), 82–101. 10.1016/j.jat.2014.11.002Suche in Google Scholar

[9] B. Currey, A. Mayeli and V. Oussa, Characterization of shift-invariant spaces on a class of nilpotent Lie groups with applications, J. Fourier Anal. Appl. 20 (2014), no. 2, 384–400. 10.1007/s00041-013-9316-zSuche in Google Scholar

[10] S. Dahlke, Multiresolution analysis and wavelets on locally compact abelian groups, Wavelets, Images, and Surface Fitting (Chamonix-Mont-Blanc 1993), A K Peters, Wellesley (1994), 141–156. Suche in Google Scholar

[11] S. R. Das, R. Velsamy and R. Ramakrishnan, Twisted shift-invariant system in L 2 ( R 2 N ) , Nagoya Math. J. 251 (2023), 734–767. 10.1017/nmj.2023.11Suche in Google Scholar

[12] Y. A. Farkov, Orthogonal wavelets with compact supports on locally compact abelian groups, Izv. Ross. Akad. Nauk Ser. Mat. 69 (2005), no. 3, 193–220. 10.4213/im644Suche in Google Scholar

[13] G. B. Folland, Harmonic Analysis in Phase Space, Ann. of Math. Stud. 122, Princeton University, Princeton, 1989. 10.1515/9781400882427Suche in Google Scholar

[14] G. B. Folland, A Course in Abstract Harmonic Analysis, Stud. Adv. Math., CRC Press, Boca Raton, 1995. Suche in Google Scholar

[15] M. Holschneider, Wavelet analysis over abelian groups, Appl. Comput. Harmon. Anal. 2 (1995), no. 1, 52–60. 10.1006/acha.1995.1004Suche in Google Scholar

[16] J. W. Iverson, Frames generated by compact group actions, Trans. Amer. Math. Soc. 370 (2018), no. 1, 509–551. 10.1090/tran/6954Suche in Google Scholar

[17] M. S. Jakobsen and J. Lemvig, Co-compact Gabor systems on locally compact abelian groups, J. Fourier Anal. Appl. 22 (2016), no. 1, 36–70. 10.1007/s00041-015-9407-0Suche in Google Scholar

[18] R. A. Kamyabi Gol and R. R. Tousi, The structure of shift invariant spaces on a locally compact abelian group, J. Math. Anal. Appl. 340 (2008), no. 1, 219–225. 10.1016/j.jmaa.2007.08.039Suche in Google Scholar

[19] G. Kutyniok and D. Labate, The theory of reproducing systems on locally compact abelian groups, Colloq. Math. 106 (2006), no. 2, 197–220. 10.4064/cm106-2-3Suche in Google Scholar

[20] A. Mayeli, Shannon multiresolution analysis on the Heisenberg group, J. Math. Anal. Appl. 348 (2008), no. 2, 671–684. 10.1016/j.jmaa.2008.07.035Suche in Google Scholar

[21] R. Radha and S. Adhikari, Frames and Riesz bases of twisted shift-invariant spaces in L 2 ( R 2 n ) , J. Math. Anal. Appl. 434 (2016), no. 2, 1442–1461. 10.1016/j.jmaa.2015.07.040Suche in Google Scholar

[22] R. Radha and S. Adhikari, Shift-invariant spaces with countably many mutually orthogonal generators on the Heisenberg group, Houston J. Math. 46 (2020), no. 2, 435–463. Suche in Google Scholar

[23] R. Ramakrishnan and R. Velsamy, Zak transform associated with the Weyl transform and the system of twisted translates on R 2 n , Results Math. 79 (2024), no. 2, Paper No. 65. 10.1007/s00025-023-02088-xSuche in Google Scholar

[24] W. Rudin, Fourier Analysis on Groups, Interscience Tracts Pure Appl. Math. 12, Interscience, New York, 1962. Suche in Google Scholar

[25] S. Thangavelu, Harmonic Analysis on the Heisenberg Group, Progr. Math. 159, Birkhäuser, Boston, 1998. 10.1007/978-1-4612-1772-5Suche in Google Scholar

Received: 2024-08-12
Published Online: 2025-03-25
Published in Print: 2025-06-01

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 17.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/forum-2024-0385/pdf
Button zum nach oben scrollen