Startseite Gradient bounds and Liouville property for a class of hypoelliptic diffusion via coupling
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Gradient bounds and Liouville property for a class of hypoelliptic diffusion via coupling

  • Bin Qian ORCID logo EMAIL logo und Beibei Zhang
Veröffentlicht/Copyright: 14. November 2024

Abstract

In this paper, we obtain the reverse Bakry–Émery-type estimates for a class of hypoelliptic diffusion operator by coupling method. The (right and reverse) Poincaré inequalities and the (right and reverse) logarithmic Sobolev inequalities are presented as consequences of such estimates. Wang–Harnack inequality, Hamilton’s gradient estimate and Liouville property are also presented by the reverse logarithmic Sobolev inequality.

MSC 2020: 60J60; 35H10

Communicated by Maria Gordina


Award Identifier / Grant number: 11671076

Funding statement: Sponsored by the National Natural Science Foundation of China (No. 11671076).

Acknowledgements

The authors would like to express sincere thanks to the anonymous referee for his/her value suggestion and comment which greatly improve the quality of the paper.

References

[1] D. Bakry, F. Baudoin, M. Bonnefont and D. Chafaï, On gradient bounds for the heat kernel on the Heisenberg group, J. Funct. Anal. 255 (2008), no. 8, 1905–1938. 10.1016/j.jfa.2008.09.002Suche in Google Scholar

[2] D. Bakry and M. Émery, Diffusions hypercontractives, Séminaire de Probabilités. XIX, 1983/84, Lecture Notes in Math. 1123, Springer, Berlin (1985), 177–206. 10.1007/BFb0075847Suche in Google Scholar

[3] D. Bakry, I. Gentil and M. Ledoux, Analysis and Geometry of Markov Diffusion Operators, Grundlehren Math. Wiss. 348, Springer, Cham, 2014. 10.1007/978-3-319-00227-9Suche in Google Scholar

[4] F. Baudoin, Bakry–Émery meet Villani, J. Funct. Anal. 273 (2017), no. 7, 2275–2291. 10.1016/j.jfa.2017.06.021Suche in Google Scholar

[5] F. Baudoin and M. Bonnefont, Log-Sobolev inequalities for subelliptic operators satisfying a generalized curvature dimension inequality, J. Funct. Anal. 262 (2012), no. 6, 2646–2676. 10.1016/j.jfa.2011.12.020Suche in Google Scholar

[6] F. Baudoin and N. Garofalo, Curvature-dimension inequalities and Ricci lower bounds for sub-Riemannian manifolds with transverse symmetries, J. Eur. Math. Soc. (JEMS) 19 (2017), no. 1, 151–219. 10.4171/jems/663Suche in Google Scholar

[7] F. Baudoin, M. Gordina, D. Herzog, J. Kim and T. Melcher, Functional inequalities for a family of infinite-dimensional diffusions with degenerate noise, preprint (2023), https://arxiv.org/abs/2311.01440. Suche in Google Scholar

[8] F. Baudoin, M. Gordina and P. Mariano, Gradient bounds for Kolmogorov type diffusions, Ann. Inst. Henri Poincaré Probab. Stat. 56 (2020), no. 1, 612–636. 10.1214/19-AIHP975Suche in Google Scholar

[9] F. Baudoin, M. Gordina and T. Melcher, Quasi-invariance for infinite-dimensional Kolmogorov diffusions, Potential Anal. 60 (2024), no. 2, 807–831. 10.1007/s11118-023-10070-zSuche in Google Scholar

[10] N. Garofalo and E. Lanconelli, Level sets of the fundamental solution and Harnack inequality for degenerate equations of Kolmogorov type, Trans. Amer. Math. Soc. 321 (1990), no. 2, 775–792. 10.1090/S0002-9947-1990-0998126-5Suche in Google Scholar

[11] A. Guillin and F.-Y. Wang, Degenerate Fokker–Planck equations: Bismut formula, gradient estimate and Harnack inequality, J. Differential Equations 253 (2012), no. 1, 20–40. 10.1016/j.jde.2012.03.014Suche in Google Scholar

[12] R. S. Hamilton, A matrix Harnack estimate for the heat equation, Comm. Anal. Geom. 1 (1993), no. 1, 113–126. 10.4310/CAG.1993.v1.n1.a6Suche in Google Scholar

[13] R. S. Hamilton, Li-Yau estimates and their Harnack inequalities, Geometry and Analysis. No. 1, Adv. Lect. Math. (ALM) 17, International Press, Somerville (2011), 329–362. Suche in Google Scholar

[14] L. Hörmander, Hypoelliptic second order differential equations, Acta Math. 119 (1967), 147–171. 10.1007/BF02392081Suche in Google Scholar

[15] H. Huang, A matrix differential Harnack estimate for a class of ultraparabolic equations, Potential Anal. 41 (2014), no. 3, 771–782. 10.1007/s11118-014-9393-xSuche in Google Scholar

[16] A. Kolmogoroff, Zufällige Bewegungen (zur Theorie der Brownschen Bewegung), Ann. of Math. (2) 35 (1934), no. 1, 116–117. 10.2307/1968123Suche in Google Scholar

[17] L. P. Kupcov, The fundamental solutions of a certain class of elliptic-parabolic second order equations, Differ. Uravn. 8 (1972), 1649–1660, 1716; translation in Differ. Equ. 8 (1972), 1269–1278. Suche in Google Scholar

[18] E. Lanconelli, A. Pascucci and S. Polidoro, Linear and nonlinear ultraparabolic equations of Kolmogorov type arising in diffusion theory and in finance, Nonlinear Problems in Mathematical Physics and Related Topics. II, Int. Math. Ser. (N. Y.) 2, Kluwer/Plenum, New York (2002), 243–265. 10.1007/978-1-4615-0701-7_14Suche in Google Scholar

[19] E. Lanconelli and S. Polidoro, On a class of hypoelliptic evolution operators, Rend. Semin. Mat. Univ. Politec. Torino 52 (1994), 29–63. Suche in Google Scholar

[20] P. Li and S.-T. Yau, On the parabolic kernel of the Schrödinger operator, Acta Math. 156 (1986), no. 3–4, 153–201. 10.1007/BF02399203Suche in Google Scholar

[21] A. Pascucci and S. Polidoro, On the Harnack inequality for a class of hypoelliptic evolution equations, Trans. Amer. Math. Soc. 356 (2004), no. 11, 4383–4394. 10.1090/S0002-9947-04-03407-5Suche in Google Scholar

[22] S. Polidoro, Uniqueness and representation theorems for solutions of Kolmogorov–Fokker–Planck equations, Rend. Mat. Appl. (7) 15 (1995), no. 4, 535–560. Suche in Google Scholar

[23] B. Qian and B. B. Zhang, A matrix differential Harnack estimate for a class of hypoelliptic evolution equations, preprint. Suche in Google Scholar

[24] B. Qian and B. B. Zhang, Gradient bounds for the iterated Kolmogorov diffusions, preprint. Suche in Google Scholar

[25] F.-Y. Wang, Analysis for Diffusion Processes on Riemannian Manifolds, Adv. Ser. Stat. Sci. Appl. Probab. 18, World Scientific, Hackensack, 2014. Suche in Google Scholar

Received: 2023-11-15
Revised: 2024-10-07
Published Online: 2024-11-14
Published in Print: 2025-06-01

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 6.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/forum-2023-0413/html?lang=de
Button zum nach oben scrollen