Home Mathematics Cylindrical ample divisors on Du Val del Pezzo surfaces
Article
Licensed
Unlicensed Requires Authentication

Cylindrical ample divisors on Du Val del Pezzo surfaces

  • Masatomo Sawahara EMAIL logo
Published/Copyright: January 13, 2025

Abstract

The existence of polarized cylinders in normal projective varieties corresponds to admitting non-trivial ๐”พ a -action on their affine cones defined by the polarized pairs. Note that a criterion for polarized cylinders in smooth del Pezzo surfaces is studied. Hence, we observe the existing condition of polarized cylinders in del Pezzo surfaces with at worst Du Val singularities. Let S be a del Pezzo surface with at worst Du Val singularities of degree โ‰ฅ 3 . We then construct an H-polar cylinder for any ample โ„š -divisor H on S.


Communicated by Jan Bruinier


Funding statement: The author was supported by the Foundation of Research Fellows, The Mathematical Society of Japan.

Acknowledgements

The author would like to thank the referees for useful comments that helped to improve this article.

References

[1] G. Belousov, Cylinders in del Pezzo surfaces of degree two, Birational Geometry, Kรคhlerโ€“Einstein Metrics and Degenerations, Springer Proc. Math. Stat. 409, Springer, Cham (2023), 17โ€“70. 10.1007/978-3-031-17859-7_2Search in Google Scholar

[2] I. Cheltsov, Cylinders in rational surfaces, Sb. Math. 212 (2021), 399โ€“415. 10.1070/SM9441Search in Google Scholar

[3] I. Cheltsov, A. Dubouloz and J. Park, Super-rigid affine Fano varieties, Compos. Math. 154 (2018), no. 11, 2462โ€“2484. 10.1112/S0010437X18007534Search in Google Scholar

[4] I. Cheltsov, J. Park, Y. Prokhorov and M. Zaidenberg, Cylinders in Fano varieties, EMS Surv. Math. Sci. 8 (2021), no. 1โ€“2, 39โ€“105. 10.4171/emss/44Search in Google Scholar

[5] I. Cheltsov, J. Park and J. Won, Affine cones over smooth cubic surfaces, J. Eur. Math. Soc. (JEMS) 18 (2016), no. 7, 1537โ€“1564. 10.4171/jems/622Search in Google Scholar

[6] I. Cheltsov, J. Park and J. Won, Cylinders in singular del Pezzo surfaces, Compos. Math. 152 (2016), no. 6, 1198โ€“1224. 10.1112/S0010437X16007284Search in Google Scholar

[7] I. Cheltsov, J. Park and J. Won, Cylinders in del Pezzo surfaces, Int. Math. Res. Not. IMRN 2017 (2017), no. 4, 1179โ€“1230. Search in Google Scholar

[8] D. F. Coray and M. A. Tsfasman, Arithmetic on singular Del Pezzo surfaces, Proc. Lond. Math. Soc. (3) 57 (1988), no. 1, 25โ€“87. 10.1112/plms/s3-57.1.25Search in Google Scholar

[9] I. V. Dolgachev, Classical Algebraic Geometry. A Modern View, Cambridge University, Cambridge, 2012. 10.1017/CBO9781139084437Search in Google Scholar

[10] N. T. A. Hang, M. Hoff and H. L. Truong, On cylindrical smooth rational Fano fourfolds, J. Korean Math. Soc. 59 (2022), no. 1, 87โ€“103. Search in Google Scholar

[11] N. T. A. Hang and H. L. Truong, The affine cones over Fanoโ€“Mukai fourfolds of genus 7 are flexible, Int. Math. Res. Not. IMRN 2024 (2024), no. 10, 8417โ€“8426. 10.1093/imrn/rnad275Search in Google Scholar

[12] M. Hoff and H. L. Truong, Flexibility of Affine cones over Mukai fourfolds of genus g โ‰ฅ 7 , preprint (2022), https://arxiv.org/abs/2208.09109. Search in Google Scholar

[13] J. Kim and J. Park, Generic flexibility of affine cones over del Pezzo surfaces of degree 2, Internat. J. Math. 32 (2021), no. 14, Article ID 2150104. 10.1142/S0129167X21501044Search in Google Scholar

[14] T. Kishimoto, Y. Prokhorov and M. Zaidenberg, Group actions on affine cones, Affine Algebraic Geometry, CRM Proc. Lecture Notes 54, American Mathematical Society, Providence (2011), 123โ€“163. 10.1090/crmp/054/08Search in Google Scholar

[15] T. Kishimoto, Y. Prokhorov and M. Zaidenberg, Unipotent group actions on del Pezzo cones, Algebr. Geom. 1 (2014), no. 1, 46โ€“56. 10.14231/AG-2014-003Search in Google Scholar

[16] H. Kojima, Algebraic compactifications of some affine surfaces, Algebra Colloq. 9 (2002), no. 4, 417โ€“425. Search in Google Scholar

[17] L. Marquand and J. Won, Cylinders in rational surfaces, Eur. J. Math. 4 (2018), no. 3, 1161โ€“1196. 10.1007/s40879-018-0229-xSearch in Google Scholar

[18] J. Park, ๐”พ a -actions on the complements of hypersurfaces, Transform. Groups 27 (2022), no. 2, 651โ€“657. 10.1007/s00031-020-09589-xSearch in Google Scholar

[19] J. Park and J. Won, Flexible affine cones over del Pezzo surfaces of degree 4, Eur. J. Math. 2 (2016), no. 1, 304โ€“318. 10.1007/s40879-015-0054-4Search in Google Scholar

[20] A. Perepechko, Flexibility of affine cones over del Pezzo surfaces of degree 4 and 5, Funct. Anal. Appl. 47 (2013), 284โ€“289. 10.1007/s10688-013-0035-7Search in Google Scholar

[21] A. Perepechko, Affine cones over cubic surfaces are flexible in codimension one, Forum Math. 33 (2021), no. 2, 339โ€“348. 10.1515/forum-2020-0191Search in Google Scholar

[22] A. Perepechko, Generic flexibility of affine cones over del Pezzo surfaces in Sagemath, preprint (2023), https://arxiv.org/abs/2305.06462. Search in Google Scholar

[23] J. Won, Flexibility of affine cones over singular del Pezzo surfaces with degree 4, East Asian Math. J. 38 (2022), 321โ€“329. Search in Google Scholar

[24] D.-Q. Zhang, Logarithmic del Pezzo surfaces of rank one with contractible boundaries, Osaka J. Math. 25 (1988), no. 2, 461โ€“497. Search in Google Scholar

Received: 2024-06-17
Revised: 2024-10-16
Published Online: 2025-01-13
Published in Print: 2025-06-01

ยฉ 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 21.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/forum-2024-0279/html
Scroll to top button