Home Bounding the number of p'-degree characters from below
Article
Licensed
Unlicensed Requires Authentication

Bounding the number of p'-degree characters from below

  • Thomas Michael Keller ORCID logo and Yong Yang ORCID logo EMAIL logo
Published/Copyright: January 13, 2025

Abstract

Let G be a finite group of order divisible by a prime p and let P Syl p ( G ) . We prove a recent conjecture by Hung stating that | Irr p ( G ) | exp ( P / P ) - 1 p - 1 + 2 p - 1 - 1 . Let a 2 be an integer and suppose that p a does not exceed the exponent of the center of P. We also show that the number of conjugacy classes of elements of G for which p a is the exact p-part of their order is at least p a - 1 .

MSC 2020: 20E45; 20D05

Communicated by Manfred Droste


Funding source: Simons Foundation

Award Identifier / Grant number: #918096

Award Identifier / Grant number: YY

Funding statement: Yong Yang was partially supported by a grant from the Simons Foundation (#918096, YY).

References

[1] R. Brauer, Representation theory of finite groups, Lectures on Modern Mathematics, John Wiley & Sons, New York (1963), 133–175. Search in Google Scholar

[2] B. Çınarcı and T. M. Keller, A new lower bound for the number of conjugacy classes, Proc. Amer. Math. Soc. 152 (2024), no. 9, 3757–3764. 10.1090/proc/16876Search in Google Scholar

[3] D. Gorenstein, Finite Groups, 2nd ed., American Mathematical Society, Providence, 1980. Search in Google Scholar

[4] L. Héthelyi, E. Horváth, T. M. Keller and A. Maróti, Groups with few conjugacy classes, Proc. Edinb. Math. Soc. (2) 54 (2011), no. 2, 423–430. 10.1017/S001309150900176XSearch in Google Scholar

[5] L. Héthelyi and B. Külshammer, On the number of conjugacy classes of a finite solvable group, Bull. Lond. Math. Soc. 32 (2000), no. 6, 668–672. 10.1112/S0024609300007499Search in Google Scholar

[6] L. Héthelyi and B. Külshammer, On the number of conjugacy classes of a finite solvable group. II, J. Algebra 270 (2003), no. 2, 660–669. 10.1016/j.jalgebra.2003.05.002Search in Google Scholar

[7] N. N. Hung, The continuity of p-rationality and a lower bound for p -degree characters of finite groups, Trans. Amer. Math. Soc. 377 (2024), no. 1, 323–344. Search in Google Scholar

[8] N. N. Hung, G. Malle and A. Maróti, On almost p-rational characters of p -degree, Forum Math. 34 (2022), no. 6, 1475–1496. Search in Google Scholar

[9] N. N. Hung and A. Maróti, p-regular conjugacy classes and p-rational irreducible characters, J. Algebra 607 (2022), 387–425. 10.1016/j.jalgebra.2021.02.007Search in Google Scholar

[10] N. N. Hung, B. Sambale and P. H. Tiep, Bounding p-Brauer characters in finite groups with two conjugacy classes of p-elements, Israel J. Math. 262 (2024), no. 1, 327–358. 10.1007/s11856-024-2613-1Search in Google Scholar

[11] N. N. Hung and A. A. Schaeffer Fry, On Héthelyi–Külshammer’s conjecture for principal blocks, Algebra Number Theory 17 (2023), no. 6, 1127–1151. 10.2140/ant.2023.17.1127Search in Google Scholar

[12] I. M. Isaacs, Finite Group Theory, Grad. Stud. Math. 92, American Mathematical Society, Providence, 2008. Search in Google Scholar

[13] T. M. Keller, Lower bounds for the number of conjugacy classes of finite groups, Math. Proc. Cambridge Philos. Soc. 147 (2009), no. 3, 567–577. 10.1017/S0305004109990090Search in Google Scholar

[14] T. M. Keller and A. Moretó, Prime divisors and the number of conjugacy classes of finite groups, Math. Proc. Cambridge Philos. Soc. 176 (2024), no. 1, 1–16. 10.1017/S030500412300035XSearch in Google Scholar

[15] G. Malle, Fast-einfache Gruppen mit langen Bahnen in absolut irreduzibler Operation, J. Algebra 300 (2006), no. 2, 655–672. 10.1016/j.jalgebra.2006.01.012Search in Google Scholar

[16] G. Malle and A. Maróti, On the number of p -degree characters in a finite group, Int. Math. Res. Not. IMRN 2016 (2016), no. 20, 6118–6132. 10.1093/imrn/rnv314Search in Google Scholar

[17] A. Maróti, A lower bound for the number of conjugacy classes of a finite group, Adv. Math. 290 (2016), 1062–1078. 10.1016/j.aim.2015.12.020Search in Google Scholar

[18] A. Maróti and I. I. Simion, Bounding the number of classes of a finite group in terms of a prime, J. Group Theory 23 (2020), no. 3, 471–488. 10.1515/jgth-2019-0144Search in Google Scholar

[19] P. P. Pálfy and L. Pyber, Small groups of automorphisms, Bull. Lond. Math. Soc. 30 (1998), no. 4, 386–390. 10.1112/S0024609397004037Search in Google Scholar

[20] A. G. Weigel and T. S. Weigel, On the orders of primitive linear p -groups, Bull. Aust. Math. Soc. 48 (1993), no. 3, 495–521. 10.1017/S0004972700015951Search in Google Scholar

[21] Y. Yang and M. Zhang, On the number of conjugacy classes of a finite solvable group, Arch. Math. (Basel) 123 (2024), no. 1, 1–7. 10.1007/s00013-024-01989-9Search in Google Scholar

Received: 2024-01-15
Revised: 2024-11-03
Published Online: 2025-01-13
Published in Print: 2025-06-01

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 26.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/forum-2024-0033/html
Scroll to top button