Startseite Weighted bilinear multiplier theorems in Dunkl setting via singular integrals
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Weighted bilinear multiplier theorems in Dunkl setting via singular integrals

  • Suman Mukherjee ORCID logo EMAIL logo und Sanjay Parui
Veröffentlicht/Copyright: 24. April 2024

Abstract

The purpose of this article is to present one and two-weight inequalities for bilinear multiplier operators in Dunkl setting with multiple Muckenhoupt weights. In order to do so, new results regarding Littlewood–Paley type theorems and weighted inequalities for multilinear Calderón–Zygmund operators in Dunkl setting are also proved.

MSC 2020: 42B15; 42B20; 42B25; 47G10; 47B34; 47B38

Funding statement: The first author is supported by a research fellowship from the Department of Atomic Energy (DAE), Government of India.

Acknowledgements

We thank the anonymous referee for her/his careful reading and helpful suggestions and comments.

  1. Communicated by: Christopher D. Sogge

References

[1] B. Amri, J.-P. Anker and M. Sifi, Three results in Dunkl analysis, Colloq. Math. 118 (2010), no. 1, 299–312. 10.4064/cm118-1-16Suche in Google Scholar

[2] B. Amri, A. Gasmi and M. Sifi, Linear and bilinear multiplier operators for the Dunkl transform, Mediterr. J. Math. 7 (2010), no. 4, 503–521. 10.1007/s00009-010-0057-9Suche in Google Scholar

[3] B. Amri and M. Sifi, Singular integral operators in Dunkl setting, J. Lie Theory 22 (2012), no. 3, 723–739. Suche in Google Scholar

[4] T. A. Bui and X. T. Duong, Weighted norm inequalities for multilinear operators and applications to multilinear Fourier multipliers, Bull. Sci. Math. 137 (2013), no. 1, 63–75. 10.1016/j.bulsci.2012.04.001Suche in Google Scholar

[5] M. Cao, Q. Xue and K. Yabuta, Weak and strong type estimates for the multilinear pseudo-differential operators, J. Funct. Anal. 278 (2020), no. 10, Article ID 108454. 10.1016/j.jfa.2019.108454Suche in Google Scholar

[6] R. R. Coifman and Y. Meyer, On commutators of singular integrals and bilinear singular integrals, Trans. Amer. Math. Soc. 212 (1975), 315–331. 10.2307/1998628Suche in Google Scholar

[7] R. R. Coifman and Y. Meyer, Au delà des opérateurs pseudo-différentiels, Astérisque 57, Société Mathématique de France, Paris, 1978. Suche in Google Scholar

[8] R. R. Coifman and Y. Meyer, Nonlinear harmonic analysis, operator theory and P.D.E, Beijing Lectures in Harmonic Analysis (Beijing 1984), Ann. of Math. Stud. 112, Princeton University, Princeton (1986), 3–45. 10.1515/9781400882090-002Suche in Google Scholar

[9] R. R. Coifman and G. Weiss, Analyse harmonique non-commutative sur certains espaces homogènes, Lecture Notes in Math. 242, Springer, Berlin, 1971. 10.1007/BFb0058946Suche in Google Scholar

[10] D. V. Cruz-Uribe, J. M. Martell and C. Pérez, Weights, Extrapolation and the Theory of Rubio de Francia, Oper. Theory Adv. Appl. 215, Birkhäuser/Springer, Basel, 2011. 10.1007/978-3-0348-0072-3Suche in Google Scholar

[11] F. Dai and W. Ye, Local restriction theorem and maximal Bochner–Riesz operators for the Dunkl transforms, Trans. Amer. Math. Soc. 371 (2019), no. 1, 641–679. 10.1090/tran/7285Suche in Google Scholar

[12] M. F. E. de Jeu, The Dunkl transform, Invent. Math. 113 (1993), no. 1, 147–162. 10.1007/BF01244305Suche in Google Scholar

[13] C. F. Dunkl, Differential-difference operators associated to reflection groups, Trans. Amer. Math. Soc. 311 (1989), no. 1, 167–183. 10.1090/S0002-9947-1989-0951883-8Suche in Google Scholar

[14] C. F. Dunkl, Hankel transforms associated to finite reflection groups, Hypergeometric Functions on Domains of Positivity, Jack Polynomials, and Applications (Tampa 1991), Contemp. Math. 138, American Mathematical Society, Providence (1992), 123–138. 10.1090/conm/138/1199124Suche in Google Scholar

[15] J. Duoandikoetxea, Fourier Analysis, Grad. Stud. Math. 29, American Mathematical Society, Providence, 2001. Suche in Google Scholar

[16] X. T. Duong, R. Gong, L. Grafakos, J. Li and L. Yan, Maximal operator for multilinear singular integrals with non-smooth kernels, Indiana Univ. Math. J. 58 (2009), no. 6, 2517–2541. 10.1512/iumj.2009.58.3803Suche in Google Scholar

[17] J. Dziubański and A. Hejna, Hörmander’s multiplier theorem for the Dunkl transform, J. Funct. Anal. 277 (2019), no. 7, 2133–2159. 10.1016/j.jfa.2019.03.002Suche in Google Scholar

[18] J. Dziubański and A. Hejna, Remarks on Dunkl translations of non-radial kernels, J. Fourier Anal. Appl. 29 (2023), no. 4, Paper No. 52. 10.1007/s00041-023-10034-2Suche in Google Scholar

[19] M. Fujita and N. Tomita, Weighted norm inequalities for multilinear Fourier multipliers, Trans. Amer. Math. Soc. 364 (2012), no. 12, 6335–6353. 10.1090/S0002-9947-2012-05700-XSuche in Google Scholar

[20] L. Grafakos, Classical Fourier Analysis, 3rd ed., Grad. Texts in Math. 249, Springer, New York, 2014. 10.1007/978-1-4939-1194-3Suche in Google Scholar

[21] L. Grafakos, L. Liu, D. Maldonado and D. Yang, Multilinear analysis on metric spaces, Dissertationes Math. 497 (2014), 121. 10.4064/dm497-0-1Suche in Google Scholar

[22] L. Grafakos, L. Liu and D. Yang, Vector-valued singular integrals and maximal functions on spaces of homogeneous type, Math. Scand. 104 (2009), no. 2, 296–310. 10.7146/math.scand.a-15099Suche in Google Scholar

[23] L. Grafakos, L. Liu and D. Yang, Multiple-weighted norm inequalities for maximal multi-linear singular integrals with non-smooth kernels, Proc. Roy. Soc. Edinburgh Sect. A 141 (2011), no. 4, 755–775. 10.1017/S0308210509001383Suche in Google Scholar

[24] L. Grafakos and R. H. Torres, Multilinear Calderón–Zygmund theory, Adv. Math. 165 (2002), no. 1, 124–164. 10.1006/aima.2001.2028Suche in Google Scholar

[25] G. Hu and C.-C. Lin, Weighted norm inequalities for multilinear singular integral operators and applications, Anal. Appl. (Singap.) 12 (2014), no. 3, 269–291. 10.1142/S0219530514500043Suche in Google Scholar

[26] C. E. Kenig and E. M. Stein, Multilinear estimates and fractional integration, Math. Res. Lett. 6 (1999), no. 1, 1–15. 10.4310/MRL.1999.v6.n1.a1Suche in Google Scholar

[27] A. K. Lerner, S. Ombrosi, C. Pérez, R. H. Torres and R. Trujillo-González, New maximal functions and multiple weights for the multilinear Calderón–Zygmund theory, Adv. Math. 220 (2009), no. 4, 1222–1264. 10.1016/j.aim.2008.10.014Suche in Google Scholar

[28] K. Li and W. Sun, Weighted estimates for multilinear Fourier multipliers, Forum Math. 27 (2015), no. 2, 1101–1116. 10.1515/forum-2012-0128Suche in Google Scholar

[29] S. Mukherjee and S. Parui, Weighted inequalities for multilinear fractional operators in Dunkl setting, J. Pseudo-Differ. Oper. Appl. 13 (2022), no. 3, Paper No. 34. 10.1007/s11868-022-00464-9Suche in Google Scholar

[30] C. Muscalu and W. Schlag, Classical and Multilinear Harmonic Analysis. Vol. II, Cambridge Stud. Adv. Math. 138, Cambridge University, Cambridge, 2013. 10.1017/CBO9781139047081Suche in Google Scholar

[31] M. Rösler, Positivity of Dunkl’s intertwining operator, Duke Math. J. 98 (1999), no. 3, 445–463. 10.1215/S0012-7094-99-09813-7Suche in Google Scholar

[32] M. Rösler, A positive radial product formula for the Dunkl kernel, Trans. Amer. Math. Soc. 355 (2003), no. 6, 2413–2438. 10.1090/S0002-9947-03-03235-5Suche in Google Scholar

[33] M. Rösler, Dunkl operators: Theory and applications, Orthogonal Polynomials and Special Functions, Lecture Notes in Math. 1817, Springer, Berlin (2003), 93–135. 10.1007/3-540-44945-0_3Suche in Google Scholar

[34] J. L. Rubio de Francia, Maximal functions and Fourier transforms, Duke Math. J. 53 (1986), no. 2, 395–404. 10.1215/S0012-7094-86-05324-XSuche in Google Scholar

[35] C. Tan, Y. Han, Y. Han, M.-Y. Lee and J. Li, Singular integral operators, T1 theorem, Littlewood–Paley theory and Hardy spaces in Dunkl setting, preprint (2022), https://arxiv.org/abs/2204.01886. Suche in Google Scholar

[36] S. Thangavelu and Y. Xu, Convolution operator and maximal function for the Dunkl transform, J. Anal. Math. 97 (2005), 25–55. 10.1007/BF02807401Suche in Google Scholar

[37] N. Tomita, A Hörmander type multiplier theorem for multilinear operators, J. Funct. Anal. 259 (2010), no. 8, 2028–2044. 10.1016/j.jfa.2010.06.010Suche in Google Scholar

[38] B. Wróbel, Approaching bilinear multipliers via a functional calculus, J. Geom. Anal. 28 (2018), no. 4, 3048–3080. 10.1007/s12220-017-9945-6Suche in Google Scholar PubMed PubMed Central

Received: 2023-11-06
Revised: 2024-02-16
Published Online: 2024-04-24
Published in Print: 2025-02-01

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 22.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/forum-2023-0398/html?lang=de
Button zum nach oben scrollen