Home The Weil bound for generalized Kloosterman sums of half-integral weight
Article
Licensed
Unlicensed Requires Authentication

The Weil bound for generalized Kloosterman sums of half-integral weight

  • Nickolas Andersen EMAIL logo , Gradin Anderson and Amy Woodall
Published/Copyright: June 26, 2024

Abstract

Let L be an even lattice of odd rank with discriminant group L / L , and let α , β L / L . We prove the Weil bound for the Kloosterman sums S α , β ( m , n , c ) of half-integral weight for the Weil Representation attached to L. We obtain this bound by proving an identity that relates a divisor sum of Kloosterman sums to a sparse exponential sum. This identity generalizes Kohnen’s identity for plus space Kloosterman sums with the theta multiplier system.

MSC 2020: 11L05; 11L07

Communicated by Jan Bruinier


References

[1] A. Adolphson, On the distribution of angles of Kloosterman sums, J. Reine Angew. Math. 395 (1989), 214–220. 10.1515/crll.1989.395.214Search in Google Scholar

[2] S. Ahlgren and N. Andersen, Kloosterman sums and Maass cusp forms of half integral weight for the modular group, Int. Math. Res. Not. IMRN 2018 (2018), no. 2, 492–570. Search in Google Scholar

[3] Ş. Alaca and G. Doyle, Explicit evaluation of double Gauss sums, J. Comb. Number Theory 9 (2017), no. 1, 47–61. Search in Google Scholar

[4] N. Andersen, Singular invariants and coefficients of harmonic weak Maass forms of weight 5/2, Forum Math. 29 (2017), no. 1, 7–29. 10.1515/forum-2015-0051Search in Google Scholar

[5] E. H. Bareiss, Sylvester’s identity and multistep integer-preserving Gaussian elimination, Math. Comp. 22 (1968), 565–578. 10.1090/S0025-5718-1968-0226829-0Search in Google Scholar

[6] B. C. Berndt, R. J. Evans and K. S. Williams, Gauss and Jacobi Sums, Canadian Math. Soc. Ser. Monogr. Adv. Texts, John Wiley & Sons, New York, 1998. Search in Google Scholar

[7] J. H. Bruinier, Borcherds Products on O(2, l) and Chern Classes of Heegner Divisors, Lecture Notes in Math. 1780, Springer, Berlin, 2002. 10.1007/b83278Search in Google Scholar

[8] J. H. Bruinier and M. Kuss, Eisenstein series attached to lattices and modular forms on orthogonal groups, Manuscripta Math. 106 (2001), no. 4, 443–459. 10.1007/s229-001-8027-1Search in Google Scholar

[9] J. H. Bruinier and K. Ono, Algebraic formulas for the coefficients of half-integral weight harmonic weak Maass forms, Adv. Math. 246 (2013), 198–219. 10.1016/j.aim.2013.05.028Search in Google Scholar

[10] E. Cohen, Rings of arithmetic functions. II. The number of solutions of quadratic congruences, Duke Math. J. 21 (1954), 9–28. 10.1215/S0012-7094-54-02102-XSearch in Google Scholar

[11] H. Cohen and F. Strömberg, Modular Forms. A Classical Approach, Grad. Stud. Math. 179, American Mathematical Society, Providence, 2017. 10.1090/gsm/179Search in Google Scholar

[12] W. Duke, Ö. Imamoḡlu and A. Tóth, Cycle integrals of the j-function and mock modular forms, Ann. of Math. (2) 173 (2011), no. 2, 947–981. 10.4007/annals.2011.173.2.8Search in Google Scholar

[13] W. Duke, Ö. Imamoḡlu and A. Tóth, Geometric invariants for real quadratic fields, Ann. of Math. (2) 184 (2016), no. 3, 949–990. 10.4007/annals.2016.184.3.8Search in Google Scholar

[14] B. Gross, W. Kohnen and D. Zagier, Heegner points and derivatives of L-series. II, Math. Ann. 278 (1987), no. 1–4, 497–562. 10.1007/BF01458081Search in Google Scholar

[15] H. Iwaniec, Topics in Classical Automorphic Forms, Grad. Stud. Math. 17, American Mathematical Society, Providence, 1997. 10.1090/gsm/017Search in Google Scholar

[16] H. Iwaniec and E. Kowalski, Analytic Number Theory, Amer. Math. Soc. Colloq. Publ. 53, American Mathematical Society, Providence, 2004. 10.1090/coll/053Search in Google Scholar

[17] N. M. Katz, Gauss Sums, Kloosterman Sums, and Monodromy Groups, Ann. of Math. Stud. 116, Princeton University, Princeton, 1988. 10.1515/9781400882120Search in Google Scholar

[18] H. D. Kloosterman, On the representation of numbers in the form a x 2 + b y 2 + c z 2 + d t 2 , Proc. Lond.Math. Soc. (2) 25 (1926), 143–173. 10.1112/plms/s2-25.1.143Search in Google Scholar

[19] W. Kohnen, Fourier coefficients of modular forms of half-integral weight, Math. Ann. 271 (1985), no. 2, 237–268. 10.1007/BF01455989Search in Google Scholar

[20] H. Rademacher, On the partition function p(n), Proc. Lond. Math. Soc. (2) 43 (1937), no. 4, 241–254. 10.1112/plms/s2-43.4.241Search in Google Scholar

[21] M. Schwagenscheidt, Eisenstein series for the Weil representation, J. Number Theory 193 (2018), 74–90. 10.1016/j.jnt.2018.05.014Search in Google Scholar

[22] A. Selberg, On the estimation of Fourier coefficients of modular forms, Proceedings of Symposia in Pure Mathematics Vol. VIII, American Mathematical Society, Providence (1965), 1–15. 10.1090/pspum/008/0182610Search in Google Scholar

[23] T. Shintani, On construction of holomorphic cusp forms of half integral weight, Nagoya Math. J. 58 (1975), 83–126. 10.1017/S0027763000016706Search in Google Scholar

[24] H. Weber, Ueber die mehrfachen Gausschischen Summen, J. Reine Angew. Math. 74 (1872), 14–56. 10.1515/crll.1872.74.14Search in Google Scholar

[25] A. Weil, On some exponential sums, Proc. Natl. Acad. Sci. USA 34 (1948), 204–207. 10.1073/pnas.34.5.204Search in Google Scholar PubMed PubMed Central

Received: 2023-10-17
Revised: 2024-05-01
Published Online: 2024-06-26
Published in Print: 2025-02-01

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 3.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/forum-2023-0367/html?lang=en
Scroll to top button