Startseite An explicit version of Bombieri’s log-free density estimate and Sárközy’s theorem for shifted primes
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

An explicit version of Bombieri’s log-free density estimate and Sárközy’s theorem for shifted primes

  • Jesse Thorner ORCID logo und Asif Zaman ORCID logo EMAIL logo
Veröffentlicht/Copyright: 11. Januar 2024

Abstract

We make explicit Bombieri’s refinement of Gallagher’s log-free “large sieve density estimate near σ = 1 ” for Dirichlet L-functions. We use this estimate and recent work of Green to prove that if N 2 is an integer, A { 1 , , N } , and for all primes p no two elements in A differ by p - 1 , then | A | N 1 - 10 - 18 . This strengthens a theorem of Sárközy.


Communicated by Maksym Radziwill


Acknowledgements

We thank Ben Green, Peter Humphries, Nathan Ng, Sarah Peluse, and Joni Teräväinen for helpful conversations and the anonymous referee for helpful comments. We performed all numerical calculations with Mathematica 12.

References

[1] C. Bennett and R. Sharpley, Interpolation of Operators, Pure Appl. Math. 129, Academic Press, Boston, 1988. Suche in Google Scholar

[2] M. A. Bennett, G. Martin, K. O’Bryant and A. Rechnitzer, Counting zeros of Dirichlet L-functions, Math. Comp. 90 (2021), no. 329, 1455–1482. 10.1090/mcom/3599Suche in Google Scholar

[3] E. Bombieri, Le grand crible dans la théorie analytique des nombres, Astérisque 18, Société Mathématique de France, Paris, 1987. Suche in Google Scholar

[4] M. Bordignon, Explicit bounds on exceptional zeroes of Dirichlet L-functions, J. Number Theory 201 (2019), 68–76. 10.1016/j.jnt.2019.02.003Suche in Google Scholar

[5] M. Bordignon, Explicit bounds on exceptional zeroes of Dirichlet L-functions II, J. Number Theory 210 (2020), 481–487. 10.1016/j.jnt.2019.10.011Suche in Google Scholar

[6] H. Davenport, Multiplicative Number Theory, 2nd ed., Grad. Texts in Math. 74, Springer, New York, 1980. 10.1007/978-1-4757-5927-3Suche in Google Scholar

[7] J. Friedlander and H. Iwaniec, Opera de Cribro, Amer. Math. Soc. Colloq. Publ. 57, American Mathematical Society, Providence, 2010. 10.1090/coll/057Suche in Google Scholar

[8] P. X. Gallagher, A large sieve density estimate near σ = 1 , Invent. Math. 11 (1970), 329–339. 10.1007/BF01403187Suche in Google Scholar

[9] B. Green, An improved bound for Sárközy’s theorem for shifted primes, assuming GRH, manuscript. Suche in Google Scholar

[10] B. Green, On Sárközy’s theorem for shifted primes, preprint (2022), https://arxiv.org/abs/2206.08001; J. Amer. Math. Soc. (2023), DOI 10.1090/jams/1036. Suche in Google Scholar

[11] D. R. Heath-Brown, Zero-free regions for Dirichlet L-functions, and the least prime in an arithmetic progression, Proc. London Math. Soc. (3) 64 (1992), no. 2, 265–338. 10.1112/plms/s3-64.2.265Suche in Google Scholar

[12] G. A. Hiary, An explicit hybrid estimate for L ( 1 / 2 + i t , χ ) , Acta Arith. 176 (2016), no. 3, 211–239. 10.4064/aa8433-7-2016Suche in Google Scholar

[13] G. A. Hiary, An explicit van der Corput estimate for ζ ( 1 / 2 + i t ) , Indag. Math. (N. S.) 27 (2016), no. 2, 524–533. 10.1016/j.indag.2015.10.011Suche in Google Scholar

[14] A. Hoey, J. Iskander, S. Jin and F. Trejos Suárez, An unconditional explicit bound on the error term in the Sato–Tate conjecture, Q. J. Math. 73 (2022), no. 4, 1189–1225. 10.1093/qmath/haac004Suche in Google Scholar

[15] M. N. Huxley, Large values of Dirichlet polynomials. III, Acta Arith. 26 (1974/75), no. 4, 435–444. 10.4064/aa-26-4-435-444Suche in Google Scholar

[16] M. Jutila, On Linnik’s constant, Math. Scand. 41 (1977), no. 1, 45–62. 10.7146/math.scand.a-11701Suche in Google Scholar

[17] H. Kadiri, N. Ng and P.-J. Wong, The least prime ideal in the Chebotarev density theorem, Proc. Amer. Math. Soc. 147 (2019), no. 6, 2289–2303. 10.1090/proc/14384Suche in Google Scholar

[18] G. Kolesnik and E. G. Straus, On the sum of powers of complex numbers, Studies in Pure Mathematics, Birkhäuser, Basel (1983), 427–442. 10.1007/978-3-0348-5438-2_38Suche in Google Scholar

[19] U. V. Linnik, On the least prime in an arithmetic progression, Rec. Math. [Mat. Sbornik] N.S. 15(57) (1944), 139–178, 347–368. Suche in Google Scholar

[20] J. Lucier, Difference sets and shifted primes, Acta Math. Hungar. 120 (2008), no. 1–2, 79–102. 10.1007/s10474-007-7107-1Suche in Google Scholar

[21] E. Makai, On a minimum problem. II, Acta Math. Acad. Sci. Hungar. 15 (1964), 63–66. 10.1007/BF01897022Suche in Google Scholar

[22] K. S. McCurley, Explicit zero-free regions for Dirichlet L-functions, J. Number Theory 19 (1984), no. 1, 7–32. 10.1016/0022-314X(84)90089-1Suche in Google Scholar

[23] F. Mertens, Ein Beitrag zur analytischen Zahlentheorie, J. Reine Angew. Math. 78 (1874), 46–62. 10.1515/9783112389843-002Suche in Google Scholar

[24] M. J. Mossinghoff and T. S. Trudgian, Nonnegative trigonometric polynomials and a zero-free region for the Riemann zeta-function, J. Number Theory 157 (2015), 329–349. 10.1016/j.jnt.2015.05.010Suche in Google Scholar

[25] D. J. Platt, Numerical computations concerning the GRH, Math. Comp. 85 (2016), no. 302, 3009–3027. 10.1090/mcom/3077Suche in Google Scholar

[26] D. Platt and T. Trudgian, The Riemann hypothesis is true up to 3 10 12 , Bull. Lond. Math. Soc. 53 (2021), no. 3, 792–797. 10.1112/blms.12460Suche in Google Scholar

[27] H. Rademacher, On the Phragmén–Lindelöf theorem and some applications, Math. Z. 72 (1959/60), 192–204. 10.1007/BF01162949Suche in Google Scholar

[28] O. Ramaré, An explicit density estimate for Dirichlet L-series, Math. Comp. 85 (2016), no. 297, 325–356. 10.1090/mcom/2991Suche in Google Scholar

[29] B. Rosser, Explicit bounds for some functions of prime numbers, Amer. J. Math. 63 (1941), 211–232. 10.2307/2371291Suche in Google Scholar

[30] J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64–94. 10.1215/ijm/1255631807Suche in Google Scholar

[31] I. Z. Ruzsa and T. Sanders, Difference sets and the primes, Acta Arith. 131 (2008), no. 3, 281–301. 10.4064/aa131-3-5Suche in Google Scholar

[32] A. Sárközy, On difference sets of sequences of integers. III, Acta Math. Acad. Sci. Hungar. 31 (1978), no. 3–4, 355–386. 10.1007/BF01901984Suche in Google Scholar

[33] V. T. Sós and P. Turán, On some new theorems in the theory of Diophantine approximations, Acta Math. Acad. Sci. Hungar. 6 (1955), 241–255. 10.1007/BF02024389Suche in Google Scholar

[34] J. Thorner and A. Zaman, An explicit bound for the least prime ideal in the Chebotarev density theorem, Algebra Number Theory 11 (2017), no. 5, 1135–1197. 10.2140/ant.2017.11.1135Suche in Google Scholar

[35] R. Wang, On a theorem of Sárközy for difference sets and shifted primes, J. Number Theory 211 (2020), 220–234. 10.1016/j.jnt.2019.10.009Suche in Google Scholar

Received: 2023-03-13
Revised: 2023-08-04
Published Online: 2024-01-11
Published in Print: 2024-07-01

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 10.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/forum-2023-0091/html
Button zum nach oben scrollen