Home Mathematics An explicit version of Bombieri’s log-free density estimate and Sárközy’s theorem for shifted primes
Article
Licensed
Unlicensed Requires Authentication

An explicit version of Bombieri’s log-free density estimate and Sárközy’s theorem for shifted primes

  • Jesse Thorner ORCID logo and Asif Zaman ORCID logo EMAIL logo
Published/Copyright: January 11, 2024

Abstract

We make explicit Bombieri’s refinement of Gallagher’s log-free “large sieve density estimate near σ = 1 ” for Dirichlet L-functions. We use this estimate and recent work of Green to prove that if N 2 is an integer, A { 1 , , N } , and for all primes p no two elements in A differ by p - 1 , then | A | N 1 - 10 - 18 . This strengthens a theorem of Sárközy.


Communicated by Maksym Radziwill


Acknowledgements

We thank Ben Green, Peter Humphries, Nathan Ng, Sarah Peluse, and Joni Teräväinen for helpful conversations and the anonymous referee for helpful comments. We performed all numerical calculations with Mathematica 12.

References

[1] C. Bennett and R. Sharpley, Interpolation of Operators, Pure Appl. Math. 129, Academic Press, Boston, 1988. Search in Google Scholar

[2] M. A. Bennett, G. Martin, K. O’Bryant and A. Rechnitzer, Counting zeros of Dirichlet L-functions, Math. Comp. 90 (2021), no. 329, 1455–1482. 10.1090/mcom/3599Search in Google Scholar

[3] E. Bombieri, Le grand crible dans la théorie analytique des nombres, Astérisque 18, Société Mathématique de France, Paris, 1987. Search in Google Scholar

[4] M. Bordignon, Explicit bounds on exceptional zeroes of Dirichlet L-functions, J. Number Theory 201 (2019), 68–76. 10.1016/j.jnt.2019.02.003Search in Google Scholar

[5] M. Bordignon, Explicit bounds on exceptional zeroes of Dirichlet L-functions II, J. Number Theory 210 (2020), 481–487. 10.1016/j.jnt.2019.10.011Search in Google Scholar

[6] H. Davenport, Multiplicative Number Theory, 2nd ed., Grad. Texts in Math. 74, Springer, New York, 1980. 10.1007/978-1-4757-5927-3Search in Google Scholar

[7] J. Friedlander and H. Iwaniec, Opera de Cribro, Amer. Math. Soc. Colloq. Publ. 57, American Mathematical Society, Providence, 2010. 10.1090/coll/057Search in Google Scholar

[8] P. X. Gallagher, A large sieve density estimate near σ = 1 , Invent. Math. 11 (1970), 329–339. 10.1007/BF01403187Search in Google Scholar

[9] B. Green, An improved bound for Sárközy’s theorem for shifted primes, assuming GRH, manuscript. Search in Google Scholar

[10] B. Green, On Sárközy’s theorem for shifted primes, preprint (2022), https://arxiv.org/abs/2206.08001; J. Amer. Math. Soc. (2023), DOI 10.1090/jams/1036. Search in Google Scholar

[11] D. R. Heath-Brown, Zero-free regions for Dirichlet L-functions, and the least prime in an arithmetic progression, Proc. London Math. Soc. (3) 64 (1992), no. 2, 265–338. 10.1112/plms/s3-64.2.265Search in Google Scholar

[12] G. A. Hiary, An explicit hybrid estimate for L ( 1 / 2 + i t , χ ) , Acta Arith. 176 (2016), no. 3, 211–239. 10.4064/aa8433-7-2016Search in Google Scholar

[13] G. A. Hiary, An explicit van der Corput estimate for ζ ( 1 / 2 + i t ) , Indag. Math. (N. S.) 27 (2016), no. 2, 524–533. 10.1016/j.indag.2015.10.011Search in Google Scholar

[14] A. Hoey, J. Iskander, S. Jin and F. Trejos Suárez, An unconditional explicit bound on the error term in the Sato–Tate conjecture, Q. J. Math. 73 (2022), no. 4, 1189–1225. 10.1093/qmath/haac004Search in Google Scholar

[15] M. N. Huxley, Large values of Dirichlet polynomials. III, Acta Arith. 26 (1974/75), no. 4, 435–444. 10.4064/aa-26-4-435-444Search in Google Scholar

[16] M. Jutila, On Linnik’s constant, Math. Scand. 41 (1977), no. 1, 45–62. 10.7146/math.scand.a-11701Search in Google Scholar

[17] H. Kadiri, N. Ng and P.-J. Wong, The least prime ideal in the Chebotarev density theorem, Proc. Amer. Math. Soc. 147 (2019), no. 6, 2289–2303. 10.1090/proc/14384Search in Google Scholar

[18] G. Kolesnik and E. G. Straus, On the sum of powers of complex numbers, Studies in Pure Mathematics, Birkhäuser, Basel (1983), 427–442. 10.1007/978-3-0348-5438-2_38Search in Google Scholar

[19] U. V. Linnik, On the least prime in an arithmetic progression, Rec. Math. [Mat. Sbornik] N.S. 15(57) (1944), 139–178, 347–368. Search in Google Scholar

[20] J. Lucier, Difference sets and shifted primes, Acta Math. Hungar. 120 (2008), no. 1–2, 79–102. 10.1007/s10474-007-7107-1Search in Google Scholar

[21] E. Makai, On a minimum problem. II, Acta Math. Acad. Sci. Hungar. 15 (1964), 63–66. 10.1007/BF01897022Search in Google Scholar

[22] K. S. McCurley, Explicit zero-free regions for Dirichlet L-functions, J. Number Theory 19 (1984), no. 1, 7–32. 10.1016/0022-314X(84)90089-1Search in Google Scholar

[23] F. Mertens, Ein Beitrag zur analytischen Zahlentheorie, J. Reine Angew. Math. 78 (1874), 46–62. 10.1515/9783112389843-002Search in Google Scholar

[24] M. J. Mossinghoff and T. S. Trudgian, Nonnegative trigonometric polynomials and a zero-free region for the Riemann zeta-function, J. Number Theory 157 (2015), 329–349. 10.1016/j.jnt.2015.05.010Search in Google Scholar

[25] D. J. Platt, Numerical computations concerning the GRH, Math. Comp. 85 (2016), no. 302, 3009–3027. 10.1090/mcom/3077Search in Google Scholar

[26] D. Platt and T. Trudgian, The Riemann hypothesis is true up to 3 10 12 , Bull. Lond. Math. Soc. 53 (2021), no. 3, 792–797. 10.1112/blms.12460Search in Google Scholar

[27] H. Rademacher, On the Phragmén–Lindelöf theorem and some applications, Math. Z. 72 (1959/60), 192–204. 10.1007/BF01162949Search in Google Scholar

[28] O. Ramaré, An explicit density estimate for Dirichlet L-series, Math. Comp. 85 (2016), no. 297, 325–356. 10.1090/mcom/2991Search in Google Scholar

[29] B. Rosser, Explicit bounds for some functions of prime numbers, Amer. J. Math. 63 (1941), 211–232. 10.2307/2371291Search in Google Scholar

[30] J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64–94. 10.1215/ijm/1255631807Search in Google Scholar

[31] I. Z. Ruzsa and T. Sanders, Difference sets and the primes, Acta Arith. 131 (2008), no. 3, 281–301. 10.4064/aa131-3-5Search in Google Scholar

[32] A. Sárközy, On difference sets of sequences of integers. III, Acta Math. Acad. Sci. Hungar. 31 (1978), no. 3–4, 355–386. 10.1007/BF01901984Search in Google Scholar

[33] V. T. Sós and P. Turán, On some new theorems in the theory of Diophantine approximations, Acta Math. Acad. Sci. Hungar. 6 (1955), 241–255. 10.1007/BF02024389Search in Google Scholar

[34] J. Thorner and A. Zaman, An explicit bound for the least prime ideal in the Chebotarev density theorem, Algebra Number Theory 11 (2017), no. 5, 1135–1197. 10.2140/ant.2017.11.1135Search in Google Scholar

[35] R. Wang, On a theorem of Sárközy for difference sets and shifted primes, J. Number Theory 211 (2020), 220–234. 10.1016/j.jnt.2019.10.009Search in Google Scholar

Received: 2023-03-13
Revised: 2023-08-04
Published Online: 2024-01-11
Published in Print: 2024-07-01

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 8.1.2026 from https://www.degruyterbrill.com/document/doi/10.1515/forum-2023-0091/html
Scroll to top button