Home Transcendence on algebraic groups
Article
Licensed
Unlicensed Requires Authentication

Transcendence on algebraic groups

  • Duc Hiep Pham ORCID logo EMAIL logo
Published/Copyright: January 11, 2024

Abstract

In this paper, we give some new results on transcendence on algebraic groups. These results extend some previous ones established on commutative or linear algebraic groups to arbitrary algebraic groups in complex and p-adic fields, respectively.


Communicated by Freydoon Shahidi


Funding statement: This research has been done under the research project QG.23.48 “Some selected topics in Number theory” of Vietnam National University, Hanoi.

Acknowledgements

The author would like to thank the anonymous referee for careful reading of this manuscript and useful comments.

References

[1] A. Baker and G. Wüstholz, Logarithmic Forms and Diophantine Geometry, New Math. Monogr. 9, Cambridge University, Cambridge, 2007. 10.1017/CBO9780511542862Search in Google Scholar

[2] D. Bertrand, Sous-groupes à un paramètre p-adique de variétés de groupe, Invent. Math. 40 (1977), no. 2, 171–193. 10.1007/BF01390344Search in Google Scholar

[3] D. Bertrand, Sous-groupes analytiques de variétés de groupe et théorème de Brumer, Study Group on Ultrametric Analysis. 7th–8th Years: 1979–1981 (Paris 1979/1981), Secrétariat Math., Paris (1981), Exp. No. 6. Search in Google Scholar

[4] N. Bourbaki, Elements of Mathematics. Lie Groups and Lie Algebras. Part I: Chapters 1–3, Hermann, Paris, 1975. Search in Google Scholar

[5] S. Lang, Transcendental points on group varieties, Topology 1 (1962), 313–318. 10.1016/0040-9383(62)90018-6Search in Google Scholar

[6] S. Lang, Introduction to Transcendental Numbers, Addison-Wesley, Reading, 1966. Search in Google Scholar

[7] J. S. Milne, Algebraic Groups, Cambridge Stud. Adv. Math. 170, Cambridge University, Cambridge, 2017. Search in Google Scholar

[8] D. H. Pham, p-adic non-commutative analytic subgroup theorem, C. R. Math. Acad. Sci. Paris 360 (2022), 933–936. 10.5802/crmath.325Search in Google Scholar

[9] G. Wüstholz, Some remarks on a conjecture of Waldschmidt, Diophantine Approximations and Transcendental Numbers (Luminy 1982), Progr. Math. 31, Birkhäuser, Boston (1983), 329–336. Search in Google Scholar

[10] G. Wüstholz, Algebraische Punkte auf analytischen Untergruppen algebraischer Gruppen, Ann. of Math. (2) 129 (1989), no. 3, 501–517. 10.2307/1971515Search in Google Scholar

[11] A. Yafaev, Non-commutative analytic subgroup theorem, J. Number Theory 230 (2022), 233–237. 10.1016/j.jnt.2021.01.025Search in Google Scholar

Received: 2023-03-07
Published Online: 2024-01-11
Published in Print: 2024-07-01

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 8.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/forum-2023-0078/html
Scroll to top button