Abstract
In this paper, we give some new results on transcendence on algebraic groups. These results extend some previous ones established on commutative or linear algebraic groups to arbitrary algebraic groups in complex and p-adic fields, respectively.
Funding statement: This research has been done under the research project QG.23.48 “Some selected topics in Number theory” of Vietnam National University, Hanoi.
Acknowledgements
The author would like to thank the anonymous referee for careful reading of this manuscript and useful comments.
References
[1] A. Baker and G. Wüstholz, Logarithmic Forms and Diophantine Geometry, New Math. Monogr. 9, Cambridge University, Cambridge, 2007. 10.1017/CBO9780511542862Search in Google Scholar
[2] D. Bertrand, Sous-groupes à un paramètre p-adique de variétés de groupe, Invent. Math. 40 (1977), no. 2, 171–193. 10.1007/BF01390344Search in Google Scholar
[3] D. Bertrand, Sous-groupes analytiques de variétés de groupe et théorème de Brumer, Study Group on Ultrametric Analysis. 7th–8th Years: 1979–1981 (Paris 1979/1981), Secrétariat Math., Paris (1981), Exp. No. 6. Search in Google Scholar
[4] N. Bourbaki, Elements of Mathematics. Lie Groups and Lie Algebras. Part I: Chapters 1–3, Hermann, Paris, 1975. Search in Google Scholar
[5] S. Lang, Transcendental points on group varieties, Topology 1 (1962), 313–318. 10.1016/0040-9383(62)90018-6Search in Google Scholar
[6] S. Lang, Introduction to Transcendental Numbers, Addison-Wesley, Reading, 1966. Search in Google Scholar
[7] J. S. Milne, Algebraic Groups, Cambridge Stud. Adv. Math. 170, Cambridge University, Cambridge, 2017. Search in Google Scholar
[8] D. H. Pham, p-adic non-commutative analytic subgroup theorem, C. R. Math. Acad. Sci. Paris 360 (2022), 933–936. 10.5802/crmath.325Search in Google Scholar
[9] G. Wüstholz, Some remarks on a conjecture of Waldschmidt, Diophantine Approximations and Transcendental Numbers (Luminy 1982), Progr. Math. 31, Birkhäuser, Boston (1983), 329–336. Search in Google Scholar
[10] G. Wüstholz, Algebraische Punkte auf analytischen Untergruppen algebraischer Gruppen, Ann. of Math. (2) 129 (1989), no. 3, 501–517. 10.2307/1971515Search in Google Scholar
[11] A. Yafaev, Non-commutative analytic subgroup theorem, J. Number Theory 230 (2022), 233–237. 10.1016/j.jnt.2021.01.025Search in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- The C*-algebra of the Boidol group
- Profinite genus of fundamental groups of compact flat manifolds with the cyclic holonomy group of square-free order
- Positive rigs
- Torus bundles over lens spaces
- Topological amenability of semihypergroups
- On projections of the tails of a power
- Li–Yorke chaos for composition operators on Orlicz spaces
- A note on the post quantum-Sheffer polynomial sequences
- Finite rigid sets of the non-separating curve complex
- Building planar polygon spaces from the projective braid arrangement
- Octonionic monogenic and slice monogenic Hardy and Bergman spaces
- Transcendence on algebraic groups
- An explicit version of Bombieri’s log-free density estimate and Sárközy’s theorem for shifted primes
- The ideal structure of partial skew groupoid rings with applications to topological dynamics and ultragraph algebras
- Joint distribution of the cokernels of random p-adic matrices II
Articles in the same Issue
- Frontmatter
- The C*-algebra of the Boidol group
- Profinite genus of fundamental groups of compact flat manifolds with the cyclic holonomy group of square-free order
- Positive rigs
- Torus bundles over lens spaces
- Topological amenability of semihypergroups
- On projections of the tails of a power
- Li–Yorke chaos for composition operators on Orlicz spaces
- A note on the post quantum-Sheffer polynomial sequences
- Finite rigid sets of the non-separating curve complex
- Building planar polygon spaces from the projective braid arrangement
- Octonionic monogenic and slice monogenic Hardy and Bergman spaces
- Transcendence on algebraic groups
- An explicit version of Bombieri’s log-free density estimate and Sárközy’s theorem for shifted primes
- The ideal structure of partial skew groupoid rings with applications to topological dynamics and ultragraph algebras
- Joint distribution of the cokernels of random p-adic matrices II