Home The sharp bound of the third Hankel determinant for starlike functions
Article
Licensed
Unlicensed Requires Authentication

The sharp bound of the third Hankel determinant for starlike functions

  • Bogumiła Kowalczyk ORCID logo , Adam Lecko ORCID logo EMAIL logo and Derek K. Thomas
Published/Copyright: July 30, 2022

Abstract

In this paper, we prove the sharp inequality | H 3 , 1 ( f ) | 4 / 9 for starlike functions 𝑓, where H 3 , 1 ( f ) is the third Hankel determinant, thus solving a long-standing problem.

MSC 2010: 30C45; 30C50

Acknowledgements

We sincerely thank the reviewer for constructive comments that helped to improve the clarity of this manuscript.

  1. Communicated by: Shigeharu Takayama

References

[1] J. W. Alexander, Functions which map the interior of the unit circle upon simple regions, Ann. of Math. (2) 17 (1915), no. 1, 12–22. 10.2307/2007212Search in Google Scholar

[2] K. O. Babalola, On H 3 ( 1 ) Hankel determinants for some classes of univalent functions, Inequality Theory and Applications. Vol. 6, Nova Science, New York (2010), 1–7. Search in Google Scholar

[3] C. Carathéodory, Über den Variabilitätsbereich der Koeffizienten von Potenzreihen, die gegebene Werte nicht annehmen, Math. Ann. 64 (1907), no. 1, 95–115. 10.1007/BF01449883Search in Google Scholar

[4] L. Carlitz, Hankel determinants and Bernoulli numbers, Tohoku Math. J. (2) 5 (1954), 272–276. 10.2748/tmj/1178245272Search in Google Scholar

[5] N. E. Cho, B. Kowalczyk, O. S. Kwon, A. Lecko and Y. J. Sim, Some coefficient inequalities related to the Hankel determinant for strongly starlike functions of order alpha, J. Math. Inequal. 11 (2017), no. 2, 429–439. 10.7153/jmi-11-36Search in Google Scholar

[6] N. E. Cho, B. Kowalczyk, O. S. Kwon, A. Lecko and Y. J. Sim, The bounds of some determinants for starlike functions of order alpha, Bull. Malays. Math. Sci. Soc. 41 (2018), no. 1, 523–535. 10.1007/s40840-017-0476-xSearch in Google Scholar

[7] P. L. Duren, Univalent Functions, Grundlehren Math. Wiss. 259, Springer, New York, 1983. Search in Google Scholar

[8] A. W. Goodman, Univalent Functions, Mariner, Tampa, 1983. Search in Google Scholar

[9] W. K. Hayman, On the second Hankel determinant of mean univalent functions, Proc. Lond. Math. Soc. (3) 18 (1968), 77–94. 10.1112/plms/s3-18.1.77Search in Google Scholar

[10] B. Kowalczyk, A. Lecko, M. Lecko and Y. J. Sim, The sharp bound of the third Hankel determinant for some classes of analytic functions, Bull. Korean Math. Soc. 55 (2018), no. 6, 1859–1868. Search in Google Scholar

[11] B. A. Kowalczyk, A. Lecko and Y. J. Sim, The sharp bound for the Hankel determinant of the third kind for convex functions, Bull. Aust. Math. Soc. 97 (2018), no. 3, 435–445. 10.1017/S0004972717001125Search in Google Scholar

[12] O. S. Kwon, A. Lecko and Y. J. Sim, On the fourth coefficient of functions in the Carathéodory class, Comput. Methods Funct. Theory 18 (2018), no. 2, 307–314. 10.1007/s40315-017-0229-8Search in Google Scholar

[13] O. S. Kwon, A. Lecko and Y. J. Sim, The bound of the Hankel determinant of the third kind for starlike functions, Bull. Malays. Math. Sci. Soc. 42 (2019), no. 2, 767–780. 10.1007/s40840-018-0683-0Search in Google Scholar

[14] O. S. Kwon and Y. J. Sim, The sharp bound of the Hankel determinant of the third kind for starlike functions with real coefficients, Mathematics 7 (2019), Paper No. 721. 10.3390/math7080721Search in Google Scholar

[15] A. Lecko and D. Partyka, A revised proof of starlikeness, “60 Years of Analytic Functions in Lublin”—in Memory of our Professors and Friends J. G. Krzyż, Z. Lewandowski and W. Szapiel, Monogr. Univ. Econ. Innov. Lublin, Innovatio Press Scientific, Lublin (2012), 85–95. Search in Google Scholar

[16] A. Lecko, Y. J. Sim and B. Śmiarowska, The sharp bound of the Hankel determinant of the third kind for starlike functions of order 1/2, Complex Anal. Oper. Theory 13 (2019), no. 5, 2231–2238. 10.1007/s11785-018-0819-0Search in Google Scholar

[17] R. J. Libera and E. J. Zł otkiewicz, Early coefficients of the inverse of a regular convex function, Proc. Amer. Math. Soc. 85 (1982), no. 2, 225–230. 10.1090/S0002-9939-1982-0652447-5Search in Google Scholar

[18] R. J. Libera and E. J. Zł otkiewicz, Coefficient bounds for the inverse of a function with derivative in 𝒫, Proc. Amer. Math. Soc. 87 (1983), no. 2, 251–257. 10.2307/2043698Search in Google Scholar

[19] M. Obradović and N. Tuneski, Some properties of the class 𝒰, Ann. Univ. Mariae Curie-Skłodowska Sect. A 73 (2019), no. 1, 49–56. 10.17951/a.2019.73.1.49-56Search in Google Scholar

[20] C. Pommerenke, On the coefficients and Hankel determinants of univalent functions, J. Lond. Math. Soc. 41 (1966), 111–122. 10.1112/jlms/s1-41.1.111Search in Google Scholar

[21] C. Pommerenke, On the Hankel determinants of univalent functions, Mathematika 14 (1967), 108–112. 10.1112/S002557930000807XSearch in Google Scholar

[22] C. Pommerenke, Univalent Functions, Vandenhoeck & Ruprecht, Göttingen, 1975. Search in Google Scholar

[23] I. J. Schoenberg, On the maxima of certain Hankel determinants and the zeros of the classical orthogonal polynomials, Indag. Math. 21 (1959), 282–290. 10.1016/S1385-7258(59)50031-1Search in Google Scholar

[24] P. Zaprawa, Third Hankel determinants for subclasses of univalent functions, Mediterr. J. Math. 14 (2017), no. 1, Paper No. 19 10.1007/s00009-016-0829-ySearch in Google Scholar

[25] P. Zaprawa, M. Obradović and N. Tuneski, Third Hankel determinant for univalent starlike functions, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 115 (2021), no. 2, Paper No. 49. 10.1007/s13398-020-00977-2Search in Google Scholar

Received: 2021-12-04
Revised: 2022-04-01
Published Online: 2022-07-30
Published in Print: 2022-09-01

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 19.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/forum-2021-0308/html?lang=en
Scroll to top button