Startseite Mathematik On length densities
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On length densities

  • Scott T. Chapman ORCID logo EMAIL logo , Christopher O’Neill ORCID logo und Vadim Ponomarenko ORCID logo
Veröffentlicht/Copyright: 1. Dezember 2021

Abstract

For a commutative cancellative monoid M, we introduce the notion of the length density of both a nonunit xM, denoted LD(x), and the entire monoid M, denoted LD(M). This invariant is related to three widely studied invariants in the theory of nonunit factorizations, L(x), (x), and ρ(x). We consider some general properties of LD(x) and LD(M) and give a wide variety of examples using numerical semigroups, Puiseux monoids, and Krull monoids. While we give an example of a monoid M with irrational length density, we show that if M is finitely generated, then LD(M) is rational and there is a nonunit element xM with LD(M)=LD(x) (such a monoid is said to have accepted length density). While it is well known that the much studied asymptotic versions of L(x), (x), and ρ(x) (denoted L¯(x), ¯(x), and ρ¯(x)) always exist, we show the somewhat surprising result that LD¯(x)=limnLD(xn) may not exist. We also give some finiteness conditions on M that force the existence of LD¯(x).

MSC 2010: 13F15; 20M14; 11R27

Communicated by Manfred Droste


Acknowledgements

The authors wish to thank the referee for many comments and suggestions that greatly improved our paper.

References

[1] D. Adams, R. Ardila, D. Hannasch, A. Kosh, H. McCarthy, V. Ponomarenko and R. Rosenbaum, Bifurcus semigroups and rings, Involve 2 (2009), no. 3, 351–356. 10.2140/involve.2009.2.351Suche in Google Scholar

[2] D. D. Anderson and D. F. Anderson, Elasticity of factorizations in integral domains, J. Pure Appl. Algebra 80 (1992), no. 3, 217–235. 10.1016/0022-4049(92)90144-5Suche in Google Scholar

[3] D. D. Anderson, D. F. Anderson, S. T. Chapman and W. W. Smith, Rational elasticity of factorizations in Krull domains, Proc. Amer. Math. Soc. 117 (1993), no. 1, 37–43. 10.1090/S0002-9939-1993-1106176-1Suche in Google Scholar

[4] D. D. Anderson and J. L. Mott, Cohen–Kaplansky domains: Integral domains with a finite number of irreducible elements, J. Algebra 148 (1992), no. 1, 17–41. 10.1016/0021-8693(92)90234-DSuche in Google Scholar

[5] D. F. Anderson, S. T. Chapman and W. W. Smith, On Krull half-factorial domains with infinite cyclic divisor class group, Houston J. Math. 20 (1994), no. 4, 561–570. Suche in Google Scholar

[6] D. F. Anderson and P. Pruis, Length functions on integral domains, Proc. Amer. Math. Soc. 113 (1991), no. 4, 933–937. 10.1090/S0002-9939-1991-1057742-1Suche in Google Scholar

[7] N. Baeth, V. Ponomarenko, D. Adams, R. Ardila, D. Hannasch, A. Kosh, H. McCarthy and R. Rosenbaum, Number theory of matrix semigroups, Linear Algebra Appl. 434 (2011), no. 3, 694–711. 10.1016/j.laa.2010.09.028Suche in Google Scholar

[8] P. Baginski, S. T. Chapman, R. Rodriguez, G. J. Schaeffer and Y. She, On the Delta set and catenary degree of Krull monoids with infinite cyclic divisor class group, J. Pure Appl. Algebra 214 (2010), no. 8, 1334–1339. 10.1016/j.jpaa.2009.10.015Suche in Google Scholar

[9] P. Baginski, S. T. Chapman and G. J. Schaeffer, On the delta set of a singular arithmetical congruence monoid, J. Théor. Nombres Bordeaux 20 (2008), no. 1, 45–59. 10.5802/jtnb.615Suche in Google Scholar

[10] M. Banister, J. Chaika, S. T. Chapman and W. Meyerson, On the arithmetic of arithmetical congruence monoids, Colloq. Math. 108 (2007), no. 1, 105–118. 10.4064/cm108-1-9Suche in Google Scholar

[11] M. Banister, J. Chaika, S. T. Chapman and W. Meyerson, A theorem on accepted elasticity in certain local arithmetical congruence monoids, Abh. Math. Semin. Univ. Hambg. 79 (2009), no. 1, 79–86. 10.1007/s12188-008-0012-xSuche in Google Scholar

[12] T. Barron, C. O’Neill and R. Pelayo, On the set of elasticities in numerical monoids, Semigroup Forum 94 (2017), no. 1, 37–50. 10.1007/s00233-015-9740-2Suche in Google Scholar

[13] V. Blanco, P. A. García-Sánchez and A. Geroldinger, Semigroup-theoretical characterizations of arithmetical invariants with applications to numerical monoids and Krull monoids, Illinois J. Math. 55 (2011), no. 4, 1385–1414. 10.1215/ijm/1373636689Suche in Google Scholar

[14] C. Bowles, S. T. Chapman, N. Kaplan and D. Reiser, On delta sets of numerical monoids, J. Algebra Appl. 5 (2006), no. 5, 695–718. 10.1142/S0219498806001958Suche in Google Scholar

[15] S. T. Chapman, F. Gotti and M. Gotti, Factorization invariants of Puiseux monoids generated by geometric sequences, Comm. Algebra 48 (2020), no. 1, 380–396. 10.1080/00927872.2019.1646269Suche in Google Scholar

[16] S. T. Chapman, F. Gotti and R. Pelayo, On delta sets and their realizable subsets in Krull monoids with cyclic class groups, Colloq. Math. 137 (2014), no. 1, 137–146. 10.4064/cm137-1-10Suche in Google Scholar

[17] S. T. Chapman, M. T. Holden and T. A. Moore, Full elasticity in atomic monoids and integral domains, Rocky Mountain J. Math. 36 (2006), no. 5, 1437–1455. 10.1216/rmjm/1181069375Suche in Google Scholar

[18] S. T. Chapman, U. Krause and E. Oeljeklaus, Monoids determined by a homogeneous linear Diophantine equation and the half-factorial property, J. Pure Appl. Algebra 151 (2000), no. 2, 107–133. 10.1016/S0022-4049(99)00062-6Suche in Google Scholar

[19] S. T. Chapman and C. O’Neill, Factoring in the Chicken McNugget monoid, Math. Mag. 91 (2018), no. 5, 323–336. 10.1080/0025570X.2018.1515559Suche in Google Scholar

[20] S. T. Chapman, W. A. Schmid and W. W. Smith, On minimal distances in Krull monoids with infinite class group, Bull. Lond. Math. Soc. 40 (2008), no. 4, 613–618. 10.1112/blms/bdn040Suche in Google Scholar

[21] S. T. Chapman and W. W. Smith, An analysis using the Zaks-Skula constant of element factorizations in Dedekind domains, J. Algebra 159 (1993), no. 1, 176–190. 10.1006/jabr.1993.1153Suche in Google Scholar

[22] R. Conaway, F. Gotti, J. Horton, C. O’Neill, R. Pelayo, M. Pracht and B. Wissman, Minimal presentations of shifted numerical monoids, Internat. J. Algebra Comput. 28 (2018), no. 1, 53–68. 10.1142/S0218196718500030Suche in Google Scholar

[23] Y. Fan and S. Tringali, Power monoids: A bridge between factorization theory and arithmetic combinatorics, J. Algebra 512 (2018), 252–294. 10.1016/j.jalgebra.2018.07.010Suche in Google Scholar

[24] R. M. Fossum, The Divisor Class Group of a Krull Domain, Ergeb. Math. Grenzgeb. (3) 74, Springer, New York, 1973. 10.1007/978-3-642-88405-4Suche in Google Scholar

[25] S. Frisch, A construction of integer-valued polynomials with prescribed sets of lengths of factorizations, Monatsh. Math. 171 (2013), no. 3–4, 341–350. 10.1007/s00605-013-0508-zSuche in Google Scholar

[26] J. I. García-García, M. A. Moreno-Frías and A. Vigneron-Tenorio, Computation of delta sets of numerical monoids, Monatsh. Math. 178 (2015), no. 3, 457–472. 10.1007/s00605-015-0785-9Suche in Google Scholar

[27] P. A. García-Sánchez, D. Llena and A. Moscariello, Delta sets for nonsymmetric numerical semigroups with embedding dimension three, Forum Math. 30 (2018), no. 1, 15–30. 10.1515/forum-2015-0065Suche in Google Scholar

[28] P. A. García Sánchez, I. Ojeda and J. C. Rosales, Affine semigroups having a unique Betti element, J. Algebra Appl. 12 (2013), no. 3, Article ID 1250177. 10.1142/S0219498812501770Suche in Google Scholar

[29] A. Geroldinger, A structure theorem for sets of lengths, Colloq. Math. 78 (1998), no. 2, 225–259. 10.4064/cm-78-2-225-259Suche in Google Scholar

[30] A. Geroldinger, Additive group theory and non-unique factorizations, Combinatorial Number Theory and Additive Group Theory, Adv. Courses Math. CRM Barcelona, Birkhäuser, Basel (2009), 1–86. 10.1007/978-3-7643-8962-8Suche in Google Scholar

[31] A. Geroldinger, Sets of lengths, Amer. Math. Monthly 123 (2016), no. 10, 960–988. 10.4169/amer.math.monthly.123.10.960Suche in Google Scholar

[32] A. Geroldinger, D. J. Grynkiewicz, G. J. Schaeffer and W. A. Schmid, On the arithmetic of Krull monoids with infinite cyclic class group, J. Pure Appl. Algebra 214 (2010), no. 12, 2219–2250. 10.1016/j.jpaa.2010.02.024Suche in Google Scholar

[33] A. Geroldinger and F. Halter-Koch, Non-Unique Factorizations: Algebraic, Combinatorial and Analytic Theory, Pure Appl. Math. (Boca Raton) 278, Chapman & Hall/CRC, Boca Raton, 2006. 10.1201/9781420003208Suche in Google Scholar

[34] A. Geroldinger and W. A. Schmid, A realization theorem for sets of distances, J. Algebra 481 (2017), 188–198. 10.1016/j.jalgebra.2017.03.003Suche in Google Scholar

[35] A. Geroldinger and W. A. Schmid, A realization theorem for sets of lengths in numerical monoids, Forum Math. 30 (2018), no. 5, 1111–1118. 10.1515/forum-2017-0180Suche in Google Scholar

[36] A. Geroldinger and P. Yuan, The set of distances in Krull monoids, Bull. Lond. Math. Soc. 44 (2012), no. 6, 1203–1208. 10.1112/blms/bds046Suche in Google Scholar

[37] A. Geroldinger and Q. Zhong, The catenary degree of Krull monoids II, J. Aust. Math. Soc. 98 (2015), no. 3, 324–354. 10.1017/S1446788714000585Suche in Google Scholar

[38] A. Geroldinger and Q. Zhong, The set of minimal distances in Krull monoids, Acta Arith. 173 (2016), no. 2, 97–120. 10.4064/aa7906-1-2016Suche in Google Scholar

[39] F. Gotti, Systems of sets of lengths of Puiseux monoids, J. Pure Appl. Algebra 223 (2019), no. 5, 1856–1868. 10.1016/j.jpaa.2018.08.004Suche in Google Scholar

[40] F. Gotti and C. O’Neill, The elasticity of Puiseux monoids, J. Commut. Algebra 12 (2020), no. 3, 319–331. 10.1216/jca.2020.12.319Suche in Google Scholar

[41] F. Kainrath, Factorization in Krull monoids with infinite class group, Colloq. Math. 80 (1999), no. 1, 23–30. 10.4064/cm-80-1-23-30Suche in Google Scholar

[42] C. O’Neill, On factorization invariants and Hilbert functions, J. Pure Appl. Algebra 221 (2017), no. 12, 3069–3088. 10.1016/j.jpaa.2017.02.014Suche in Google Scholar

Received: 2020-10-13
Revised: 2021-11-10
Published Online: 2021-12-01
Published in Print: 2022-03-01

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.2.2026 von https://www.degruyterbrill.com/document/doi/10.1515/forum-2021-0149/pdf
Button zum nach oben scrollen