Startseite Completely positive maps of order zero on pro-đ¶âˆ—-algebras
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Completely positive maps of order zero on pro-đ¶âˆ—-algebras

  • Maria JoiĆŁa EMAIL logo
Veröffentlicht/Copyright: 25. September 2020

Abstract

We extend the definition of order zero maps to the setting of pro-C*-algebras and generalize structure theorems of order zero maps between C*-algebras to strongly bounded order zero maps between pro-C∗-algebras. An application to tensor products is included.

MSC 2010: 46L05

Communicated by Siegfried Echterhoff


Acknowledgements

The author would like to thank the referee for his/her careful reading and useful comments.

References

[1] S. J. Bhatt and D. J. Karia, Complete positivity, tensor products and C*-nuclearity for inverse limits of C*-algebras, Proc. Indian Acad. Sci. Math. Sci. 101 (1991), no. 3, 149–167. 10.1007/BF02836797Suche in Google Scholar

[2] M. Fragoulopoulou, Topological Algebras with Involution, North-Holland Math. Stud. 200, Elsevier Science, Amsterdam, 2005. Suche in Google Scholar

[3] A. Inoue, Locally C∗-algebra, Mem. Fac. Sci. Kyushu Univ. Ser. A 25 (1971), 197–235. 10.2206/kyushumfs.25.197Suche in Google Scholar

[4] M. JoiĆŁa, Hilbert Modules over Locally C*-Algebras, Bucharest University Press, Bucharest, 2006. Suche in Google Scholar

[5] M. Joiƣa, Strict completely positive maps between locally C*-algebras and representations on Hilbert modules, J. Lond. Math. Soc. (2) 66 (2002), no. 2, 421–432. 10.1112/S0024610702003411Suche in Google Scholar

[6] E. C. Lance, Hilbert C*-Modules. A Toolkit for Operator Algebraists, London Math. Soc. Lecture Note Ser. 210, Cambridge University, Cambridge, 1995. 10.1017/CBO9780511526206Suche in Google Scholar

[7] A. Mallios, Topological Algebras. Selected Topics, North-Holland Math. Stud. 124, North-Holland, Amsterdam, 1986. Suche in Google Scholar

[8] N. C. Phillips, Inverse limits of C*-algebras, J. Operator Theory 19 (1988), no. 1, 159–195. Suche in Google Scholar

[9] W. Winter, Covering dimension for nuclear C*-algebras, J. Funct. Anal. 199 (2003), no. 2, 535–556. 10.1016/S0022-1236(02)00109-XSuche in Google Scholar

[10] W. Winter, Covering dimension for nuclear C*-algebras. II, Trans. Amer. Math. Soc. 361 (2009), no. 8, 4143–4167. 10.1090/S0002-9947-09-04602-9Suche in Google Scholar

[11] W. Winter and J. Zacharias, Completely positive maps of order zero, MĂŒnster J. Math. 2 (2009), 311–324. Suche in Google Scholar

[12] W. Winter and J. Zacharias, The nuclear dimension of C∗-algebras, Adv. Math. 224 (2010), no. 2, 461–498. 10.1016/j.aim.2009.12.005Suche in Google Scholar

[13] M. Wolff, Disjointness preserving operators on C*-algebras, Arch. Math. (Basel) 62 (1994), no. 3, 248–253. 10.1007/BF01261365Suche in Google Scholar

Received: 2020-01-15
Revised: 2020-08-01
Published Online: 2020-09-25
Published in Print: 2021-01-01

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 13.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/forum-2020-0012/html
Button zum nach oben scrollen