Abstract
Let L be a first-order language with equality and let 𝔘 be an L-structure of cardinality κ. If ℵ0 ≤ λ ≤ κ, then we say that 𝔘 is elementarily λ-homogeneous iff any two substructures of cardinality λ are elementarily equivalent, and λ-homogeneous iff any two substructures of cardinality λ are isomorphic. In this note, we classify the elementarily λ-homogeneous structures (A, ƒ) where ƒ : A → A is a function and λ is a cardinal such that ℵ0 ≤ λ ≤ |A|. As a corollary, we obtain a complete description of the Jónsson algebras (A, ƒ), where ƒ : A → A.
Received: 2009-05-09
Revised: 2009-09-10
Published Online: 2010-03-26
Published in Print: 2011-July
© de Gruyter 2011
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Artikel in diesem Heft
- The sh-Lie algebra perturbation lemma
- Gradient estimates in Orlicz spaces for nonlinear elliptic equations with BMO nonlinearity in nonsmooth domains
- Geography of non-formal symplectic and contact manifolds
- Hp → Hp boundedness implies Hp → Lp boundedness
- Global regularity for the minimal surface equation in Minkowskian geometry
- On elementarily κ-homogeneous unary structures
- Kernels, regularity and unipotent radicals in linear algebraic monoids
- Mod-Gaussian convergence: new limit theorems in probability and number theory
- Uniform large deviation for pinned hyperbolic Brownian motion
Schlagwörter für diesen Artikel
Connected component;
cofinality;
elementarily equivalent;
Jónsson algebra
Artikel in diesem Heft
- The sh-Lie algebra perturbation lemma
- Gradient estimates in Orlicz spaces for nonlinear elliptic equations with BMO nonlinearity in nonsmooth domains
- Geography of non-formal symplectic and contact manifolds
- Hp → Hp boundedness implies Hp → Lp boundedness
- Global regularity for the minimal surface equation in Minkowskian geometry
- On elementarily κ-homogeneous unary structures
- Kernels, regularity and unipotent radicals in linear algebraic monoids
- Mod-Gaussian convergence: new limit theorems in probability and number theory
- Uniform large deviation for pinned hyperbolic Brownian motion