Startseite Hp → Hp boundedness implies Hp → Lp boundedness
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

HpHp boundedness implies HpLp boundedness

  • Yongsheng Han EMAIL logo , Ji Li , Guozhen Lu und Peiyong Wang
Veröffentlicht/Copyright: 26. März 2010
Forum Mathematicum
Aus der Zeitschrift Band 23 Heft 4

Abstract

In this paper, we explore a general method to derive HpLp boundedness from HpHp boundedness of linear operators, an idea originated in the work of Han and Lu in dealing with the multiparameter flag singular integrals ([Discrete Littlewood-Paley-Stein theory and multi-parameter Hardy spaces associated with the flag singular integrals]). These linear operators include many singular integral operators in one parameter and multiparameter settings. In this paper, we will illustrate further that this method will enable us to prove the HpLp boundedness on product spaces of homogeneous type in the sense of Coifman and Weiss ([Lecture Notes in Math. 242: 1971]) where maximal function characterization of Hardy spaces is not available. Moreover, we also provide a particularly easy argument in those settings such as one parameter or multiparameter Hardy spaces and where the maximal function characterization exists. The key idea is to prove ‖ƒ‖LpC ‖ƒ ‖Hp for ƒ ∈ LqHp (1 < q < ∞, 0 < p ≤ 1). It is surprising that this simple result even in this classical setting has been absent in the literature.

Published Online: 2010-03-26
Published in Print: 2011-July

© de Gruyter 2011

Heruntergeladen am 7.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/form.2011.026/html
Button zum nach oben scrollen