Home Mod-Gaussian convergence: new limit theorems in probability and number theory
Article
Licensed
Unlicensed Requires Authentication

Mod-Gaussian convergence: new limit theorems in probability and number theory

  • Jean Jacod EMAIL logo , Emmanuel Kowalski and Ashkan Nikeghbali
Published/Copyright: April 14, 2010
Forum Mathematicum
From the journal Volume 23 Issue 4

Abstract

We introduce a new type of convergence in probability theory, which we call “mod-Gaussian convergence”. It is directly inspired by theorems and conjectures, in random matrix theory and number theory, concerning moments of values of characteristic polynomials or zeta functions. We study this type of convergence in detail in the framework of infinitely divisible distributions, and exhibit some unconditional occurrences in number theory, in particular for families of L-functions over function fields in the Katz–Sarnak framework. A similar phenomenon of “mod-Poisson convergence” turns out to also appear in the classical Erdős–Kac Theorem.

Received: 2008-07-30
Revised: 2009-11-02
Published Online: 2010-04-14
Published in Print: 2011-July

© de Gruyter 2011

Downloaded on 7.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/form.2011.030/html
Scroll to top button