Startseite On the Green function of the killed fractional Laplacian on the periodic domain
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On the Green function of the killed fractional Laplacian on the periodic domain

  • Thomas Simon
Veröffentlicht/Copyright: 28. Oktober 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We give a very simple proof of the positivity and unimodality of the Green function for the killed fractional Laplacian on the periodic domain. The argument relies on the Jacobi triple product and a probabilistic representation of the Green function. We also show by a contour integration that the Green function is completely monotone on the positive part of the periodic domain.

References

[1] G. E. Andrews, R. Askey and R. Roy, Special Functions. Cambridge University Press, Cambridge, 1999.10.1017/CBO9781107325937Suche in Google Scholar

[2] V. V. Anh and R. McVinish, Completely monotone property of fractional Green functions. Fract. Calc. Appl. Anal. 6, No 2 (2003), 157– 173.Suche in Google Scholar

[3] R. L. Frank and E. Lenzmann, Uniqueness of non-linear ground states for fractional Laplacian in R. Acta Math. 210 (2013), 261–318; DOI: 10.1007/s11511-013-0095-9.10.1007/s11511-013-0095-9Suche in Google Scholar

[4] R. Gorenflo, A. A. Kilbas, F. Mainardi and S. V. Rogosin, Mittag-Leffler Functions, Related Topics and Applications. Springer Verlag, Heidelberg, 2nd Ed., 2020.10.1007/978-3-662-61550-8Suche in Google Scholar

[5] U. Le and D. E. Pelinovsky, Green’s function for the fractional KdV equation on the periodic domain via Mittag-Leffler’s function. Fract. Calc. Appl. Anal. 24, No 5 (2021), 1507–1534; DOI:10.1515/fca-2021-0063https://www.degruyter.com/journal/key/fca/24/5/htmlSuche in Google Scholar

[6] G. Samorodnitsky and M. S. Taqqu, Stable Non-Gaussian Random Processes. Chapman & Hall, New-York, 1994.Suche in Google Scholar

[7] A. Zygmund, Trigonometrical Series. Chelsea Publishing, New York, 1952.Suche in Google Scholar

Received: 2021-01-24
Revised: 2021-09-15
Published Online: 2021-10-28
Published in Print: 2021-10-26

© 2021 Diogenes Co., Sofia

Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/fca-2021-0069/html?lang=de
Button zum nach oben scrollen