Startseite Analysis and fast approximation of a steady-state spatially-dependent distributed-order space-fractional diffusion equation
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Analysis and fast approximation of a steady-state spatially-dependent distributed-order space-fractional diffusion equation

  • Jinhong Jia , Xiangcheng Zheng und Hong Wang EMAIL logo
Veröffentlicht/Copyright: 28. Oktober 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We prove the wellposedness of a distributed-order space-fractional diffusion equation with variably distribution and its support, which could adequately model the challenging phenomena such as the anomalous diffusion in multiscale heterogeneous porous media, and smoothing properties of its solutions. We develop and analyze a collocation scheme for the proposed model based on the proved smoothing properties of the solutions. Furthermore, we approximately expand the stiffness matrix by a sum of Toeplitz matrices multiplied by diagonal matrices, which can be employed to develop the fast solver for the approximated system. We prove that it suffices to apply O(log N) terms of expansion to retain the accuracy of the numerical discretization of degree N, which reduces the storage of the stiffness matrix from O(N2) to O(N log N), and the computational cost of matrix-vector multiplication from O(N2) to O(N log2 N). Numerical results are presented to verify the effectiveness and the efficiency of the fast method.

MSC 2010: 65F05; 65M70; 65R20; 26A33

Acknowledgements

The authors would like to express their most sincere thanks to the referees for their very helpful comments and suggestions, which greatly improved the quality of this paper. This work was partially funded by the National Natural Science Foundation of China under Grants 11971272 and 12001337, by the ARO MURI Grant W911NF-15-1-0562, by the National Science Foundation under Grant DMS-2012291, by the China Postdoctoral Science Foundation 2021TQ0017, by the International Postdoctoral Exchange Fellowship Program (Talent-Introduction Program) YJ20210019, and by the Natural Science Foundation of Shandong Province under Grant ZR2019BA026.

References

[1] R. Adams and J. Fournier, Sobolev Spaces. Elsevier (2003).Suche in Google Scholar

[2] R. Bagley and P. Torvik, On the existence of the order domain and the solution of distributed order equations–Part I. Int. J. Appl. Math. 2, No 7 (2000), 865–882.Suche in Google Scholar

[3] D.A. Benson, R.A. Schumer, M.M. Meerschaert, and S.M. Wheetcraft, Fractional dispersion, Lévy motion, and the MADE tracer tests. Transport Porous Med. 42, No 1 (2001), 211–240; DOI: 10.1023/A:1006733002131.10.1023/A:1006733002131Suche in Google Scholar

[4] M. Caputo, Diffusion with space memory modelled with distributed order space fractional differential equations. Ann. Geophys. 46, No 2 (2009), 223–234; DOI: 10.4401/ag-3395.10.4401/ag-3395Suche in Google Scholar

[5] A.V. Chechkin, R. Gorenflo, I.M. Sokolov and V.Y. Gonchar, Distributed order time fractional diffusion equation. Fract. Calc. Appl. Anal. 6, No 3 (2003), 259–279.Suche in Google Scholar

[6] D. del-Castillo-Negrete, Front propagation in reaction-diffusion systems with anomalous diffusion. Bol. Soc. Mat. Mex. 20, No 1 (2014), 87–105; DOI: 10.1007/s40590-014-0008-8.10.1007/s40590-014-0008-8Suche in Google Scholar

[7] K. Diethelm and N.J. Ford, Numerical solution methods for distributed order differential equations. Fract. Calc. Appl. Anal. 4, No 4 (2001), 531–542.Suche in Google Scholar

[8] K. Diethelm and N.J. Ford, Numerical analysis for distributed-order differential equations. J. Comput. Appl. Math. 225, No 1 (2009), 96–104; DOI: 10.1016/j.cam.2008.07.018.10.1016/j.cam.2008.07.018Suche in Google Scholar

[9] V.J. Ervin, N. Heuer and J.P. Roop, Regularity of the solution to 1 − D fractional order diffusion equations. Math. Comput. 87, No 313 (2018), 2273–2294; DOI: 10.1090/mcom/3295.10.1090/mcom/3295Suche in Google Scholar

[10] V.J. Ervin, Regularity of the solution to fractional diffusion, advection, reaction equations in weighted Sobolev spaces. J. Differ. Equ. 278 (2021), 294–325; DOI: 10.1016/j.jde.2020.12.034.10.1016/j.jde.2020.12.034Suche in Google Scholar

[11] G. Gao, H. Sun, and Z. Sun, Some high-order difference schemes for the distributed-order differential equations. J. Comput. Phys. 298 (2015), 337–359; DOI: 10.1016/j.jcp.2015.05.047.10.1016/j.jcp.2015.05.047Suche in Google Scholar

[12] R. Garrappa and E. Kaslik, Stability of fractional-order systems with Prabhakar derivatives. Nonlinear Dyn. 102 (2020), 567–578; DOI: 10.1007/s11071-020-05897-9.10.1007/s11071-020-05897-9Suche in Google Scholar

[13] R. Gorenflo, Y. Luchko and M. Stojanović. Fundamental solution of a distributed order time-fractional diffusion-wave equation as probability density. Fract. Calc. Appl. Anal. 16, No 2 (2013), 297–316; DOI: 10.2478/s13540-013-0019-6; https://www.degruyter.com/journal/key/fca/16/2/html.10.2478/s13540-013-0019-6Suche in Google Scholar

[14] W. Hackbusch, Integral Equations: Theory and Numerical Treatment. Birkhauser Verlag (1995).10.1007/978-3-0348-9215-5Suche in Google Scholar

[15] J. Jia and H. Wang, A fast finite difference method for distributed-order space-fractional partial differential equations on convex domains. Comput. Math. Appl. 75, No 6 (2018), 2031–2043; DOI: 10.1016/j.camwa.2017.09.003.10.1016/j.camwa.2017.09.003Suche in Google Scholar

[16] J. Jia and H. Wang, A fast finite volume method for conservative space-time fractional diffusion equations discretized on space-time locally refined meshes. Comput. Math. Appl. 78, No 1 (2019), 1345–1356; DOI: 10.1016/j.camwa.2019.04.003.10.1016/j.camwa.2019.04.003Suche in Google Scholar

[17] J. Jia, H. Wang and X. Zheng, A fast collocation approximation to a two-sided variable-order space-fractional diffusion equation and its analysis. J. Comput. Appl. Math. 388 (2021), Art. 113234; DOI: 10.1016/j.cam.2020.113234.10.1016/j.cam.2020.113234Suche in Google Scholar

[18] J. Jia, X. Zheng, H. Fu, P. Dai and H. Wang, A fast method for variable-order space-fractional diffusion equations. Numer. Algor. 85 (2020), 1519–1540; DOI: 10.1007/s11075-020-00875-z.10.1007/s11075-020-00875-zSuche in Google Scholar

[19] B. Jin, R. Lazarov, J. Pasciak and W. Rundell, Variational formulation of problems involving fractional order differential operators. Math. Comp. 84, No 296 (2015), 2665–2700; DOI: 10.1090/mcom/2960.10.1090/mcom/2960Suche in Google Scholar

[20] B. Jin, R. Lazarov, D. Sheen and Z. Zhou, Error estimates for approximations of distributed-order time fractional diffusion with nonsmooth data. Fract. Calc. Appl. Anal. 19, No 1 (2016), 69–93; DOI: 10.1515/fca-2016-0005; https://www.degruyter.com/journal/key/fca/19/1/html.10.1515/fca-2016-0005Suche in Google Scholar

[21] J. Li, F. Liu, L. Feng, I. Turner, A novel finite volume method for the Riesz space distributed-order diffusion equation. Comput. Math. Appl. 74, No 4 (2017), 772–783; DOI: 10.1016/j.camwa.2017.05.017.10.1016/j.camwa.2017.05.017Suche in Google Scholar

[22] X. Li, Z. Mao, N. Wang, F. Song, H. Wang, and G.E. Karniadakis, A fast solver for spectral elements applied to fractional differential equations using hierarchical matrix approximation. Comput. Methods Appl. Mech. Engrg. 366 (2020), Art. 113053; DOI: 10.1016/j.cma.2020.113053.10.1016/j.cma.2020.113053Suche in Google Scholar

[23] Z. Li, Y. Luchko, M. Yamamoto, Asymptotic estimates of solutions to initial-boundary-value problems for distributed order time-fractional diffusion equations. Fract. Calc. Appl. Anal. 17, No 4 (2014), 1114–1136; DOI: 10.2478/s13540-014-0217-x; https://www.degruyter.com/journal/key/fca/17/4/html.10.2478/s13540-014-0217-xSuche in Google Scholar

[24] Z. Li, Y. Luchko, M. Yamamoto, Analyticity of solutions to a distributed order time-fractional diffusion equation and its application to an inverse problem. Comput. & Math. Appl. 73, No 6 (2017), 1041–1052; DOI: 10.1016/j.camwa.2016.06.030.10.1016/j.camwa.2016.06.030Suche in Google Scholar

[25] X. Lin, M. Ng, and H. Sun, A splitting preconditioner for Toeplitz-like linear systems arising from fractional diffusion equations. SIAM J. Matrix Anal. Appl. 38, No 4 (2017), 1580–1614; DOI: 10.1137/17M1115447.10.1137/17M1115447Suche in Google Scholar

[26] C. Lorenzo and T. Hartley, Variable order and distributed order fractional operators. Nonlinear Dyn. 29, No 1 (2002), 57–98; DOI: 10.1023/A:1016586905654.10.1023/A:1016586905654Suche in Google Scholar

[27] Y. Luchko, Boundary value problems for the generalized time-fractional diffusion equation of distributed order. Fract. Calc. Appl. Anal. 12, No 4 (2009), 409–422.Suche in Google Scholar

[28] F. Mainardi, G. Pagnini, and R. Gorenflo, Some aspects of fractional diffusion equations of single and distributed order. Appl. Math. Comput. 187, No 1 (2007), 295–305; DOI: 10.1016/j.amc.2006.08.126.10.1016/j.amc.2006.08.126Suche in Google Scholar

[29] M. Meerschaert and A. Sikorskii, Stochastic Models for Fractional Calculus. De Gruyter (2012).10.1515/9783110258165Suche in Google Scholar

[30] R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: a frational dynamics approach. Phys. Rep. 339, No 1 (2000), 1–77; DOI: 10.1016/S0370-1573(00)00070-3.10.1016/S0370-1573(00)00070-3Suche in Google Scholar

[31] M. Morgado and M. Rebelo, Numerical approximation of distributed order reaction-diffusion equations. J. Comput. Appl. Math. 275 (2015), 216–227; DOI: 10.1016/j.cam.2014.07.029.10.1016/j.cam.2014.07.029Suche in Google Scholar

[32] I. Podlubny, Fractional Differential Equations. Academic Press (1999).Suche in Google Scholar

[33] H. Sun, W. Chen, H. Wei and Y. Chen, A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems. Eur. Phys. J. Spec. Top. 193, No 1 (2011), 185–192; DOI: 10.1140/epjst/e2011-01390-6.10.1140/epjst/e2011-01390-6Suche in Google Scholar

[34] J. Varah, A lower bound for the smallest singular value of a matrix. Linear Algebra Appl. 11, No 1 (1975), 3–5; DOI: 10.1016/0024-3795(75)90112-3.10.1016/0024-3795(75)90112-3Suche in Google Scholar

[35] H. Wang and T.S. Basu, A fast finite difference method for two-dimensional space-fractional diffusion equations. SIAM J. Sci. Comput. 34 (2012), A2444–A2458; DOI: 10.1137/12086491X.10.1137/12086491XSuche in Google Scholar

[36] H. Wang, K. Wang, and T. Sircar, A direct O(N log2 N) finite difference method for fractional diffusion equations. J. Comput. Phys. 229, No 21 (2010), 8095–8104; DOI: 10.1016/j.jcp.2010.07.011.10.1016/j.jcp.2010.07.011Suche in Google Scholar

[37] H. Wang, D. Yang, S. Zhu, Inhomogeneous Dirichlet boundary-value problems of space-fractional diffusion equations and their finite element approximations. SIAM J. Numer. Anal. 52 (2014), 1292–1310; DOI: 10.1137/130932776.10.1137/130932776Suche in Google Scholar

[38] X. Zhao, X. Hu, W. Cai, and G.E. Karniadakis, Adaptive finite element method for fractional differential equations using hierarchical matrices. Comput. Methods Appl. Mech. Engrg. 325 (2017), 56–76; DOI: 10.1016/j.cma.2017.06.017.10.1016/j.cma.2017.06.017Suche in Google Scholar

[39] X. Zheng, V.J. Ervin, H. Wang, Optimal Petrov-Galerkin spectral approximation method for the fractional diffusion, advection, reaction equation on a bounded interval. J. Sci. Comput. 86 (2021), Art. 29; DOI: 10.1007/s10915-020-01366-y.10.1007/s10915-020-01366-ySuche in Google Scholar

[40] X. Zheng and H. Wang, Variable-order space-fractional diffusion equations and a variable-order modification of constant-order fractional problems. Appl. Anal. (2020); DOI: 10.1080/00036811.2020.1789596.10.1080/00036811.2020.1789596Suche in Google Scholar

[41] X. Zheng, H. Liu, H. Wang, H. Fu, Optimal-order finite element approximations to variable-coefficient two-sided space-fractional advection-reaction-diffusion equation in three space dimensions. Appl. Numer. Math. 161, No 2 (2021), 1–12; DOI: 10.1016/j.apnum.2020.10.022.10.1016/j.apnum.2020.10.022Suche in Google Scholar

[42] X. Zheng and H. Wang, An optimal-order numerical approximation to variable-order space-fractional diffusion equations on uniform or graded meshes. SIAM J. Numer. Anal. 58, No 1 (2020), 330–352; DOI: 10.1137/19M1245621.10.1137/19M1245621Suche in Google Scholar

Received: 2020-12-20
Revised: 2021-08-29
Published Online: 2021-10-28
Published in Print: 2021-10-26

© 2021 Diogenes Co., Sofia

Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/fca-2021-0062/html
Button zum nach oben scrollen