Abstract
The identification problem for system with distributed-order derivative was considered. The order-weight distribution was approximated by piecewise linear functions. Then the discretized order-weight distribution was solved in frequency domain by using the least square technique based on the Moore-Penrose inverse matrix. Finally, five representative numerical examples were used to illustrate the validity of the method. The identification results are satisfactory, especially for the continuous order-weight distributions. In addition, the overlapped Bode magnitude frequency responses from the identified and exact transfer functions imply the effectiveness of the method.
Acknowledgements
The authors thank the National Natural Science Foundation of China for the support, under Grant No 11772203.
References
[1] S. Abrashov, R. Malti, M. Moze, X. Moreau, F. Aioun, F. Guillemard, Simple and robust experiment design for system identification using fractional models. IEEE Trans. Automat. Contr. 62, No 6 (2017), 2648–2658.10.1109/TAC.2016.2614910Suche in Google Scholar
[2] H. Aminikhah, A.H.R. Sheikhani, T. Houlari, H. Rezazadeh, Numerical solution of the distributed-order fractional Bagley-Torvik equation. IEEE/CAA J. Autom. Sin. 6, No 3 (2019), 760–765.10.1109/JAS.2017.7510646Suche in Google Scholar
[3] A. Arikoglu, A new fractional derivative model for linearly viscoelastic materials and parameter identification via genetic algorithms. Rheol. Acta. 53, No 3 (2014), 219–233.10.1007/s00397-014-0758-2Suche in Google Scholar
[4] T.M. Atanackovic, On a distributed derivative model of a viscoelastic body. C.R. Mécanique 331, No 10 (2003), 687–692.10.1016/j.crme.2003.08.003Suche in Google Scholar
[5] T.M. Atanackovic, L. Oparnica, S. Pilipović, Semilinear ordinary differential equation coupled with distributed order fractional differential equation. Nonlinear Anal. 72, No 11 (2010), 4101–4114.10.1016/j.na.2010.01.042Suche in Google Scholar
[6] R.L. Bagley, P.J. Torvik, On the existence of the order domain and the solution of distributed order equations - Part I. Int. J. Appl. Math. 2, No 7 (2000), 865–882.Suche in Google Scholar
[7] M. Caputo, Distributed order differential equations modeling dielectric induction and diffusion. Fract. Calc. Appl. Anal. 4, No 4 (2001), 421–442.Suche in Google Scholar
[8] M. Caputo, Linear models of dissipation whose Q is almost frequency independent-II. Geophys. J. R. Astr. Soc. 13, No 5 (1967), 529–539.10.1111/j.1365-246X.1967.tb02303.xSuche in Google Scholar
[9] S. Das, Functional Fractional Calculus for System Identification and Controls. Springer, Berlin (2008).Suche in Google Scholar
[10] K. Diethelm, N.J. Ford, Numerical solution methods for distributed order differential equations. Fract. Calc. Appl. Anal. 4, No 4 (2001), 531–542.Suche in Google Scholar
[11] K. Diethelm, R. Garrappa, A. Giusti, M. Stynes, Why fractional derivatives with nonsingural kernels should not be used. Fract. Calc. Appl. Anal. 23, No 3 (2020), 610–634; 10.1515/fca-2020-0032; https://www.degruyter.com/journal/key/fca/23/3/html.Suche in Google Scholar
[12] J.S. Duan, Z. Wang, S.Z. Fu, The zeros of the solutions of the fractional oscillation equation. Fract. Calc. Appl. Anal. 17, No 1 (2014), 10–22; 10.2478/s13540-014-0152-x; https://www.degruyter.com/journal/key/fca/17/1/html.Suche in Google Scholar
[13] T.T. Hartley, C.F. Lorenzo, Fractional-order system identification based on continuous order-distributions. Signal Process. 83, No 11 (2003), 2287–2300.10.1016/S0165-1684(03)00182-8Suche in Google Scholar
[14] Z. Jiao, Y.Q. Chen, I. Podlubny, Distributed-Order Dynamic Systems Stability, Simulation, Applications and Perspectives. Springer, London (2012).Suche in Google Scholar
[15] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity. Imperial College Press, London (2010).10.1142/p614Suche in Google Scholar
[16] P. Nazarian, M. Haeri, Generalization of order distribution concept use in the fractional order system identification. Signal Process. 90, No 7 (2010), 2243–2252.10.1016/j.sigpro.2010.02.008Suche in Google Scholar
[17] I. Podlubny, Fractional Differential Equations. Academic Press, San Diego (1999).Suche in Google Scholar
[18] H. Sheng, Y.Q. Chen, T.S. Qiu, Fractional Processes and Fractional-Order Signal Processing: Techniques and Applications. Springer, London (2012).10.1007/978-1-4471-2233-3Suche in Google Scholar
[19] S. Umarov, Continuous time random walk models associated with distributed order diffusion equations. Fract. Calc. Appl. Anal. 18, No 3 (2015), 821–837; 10.1515/fca-2015-0049; https://www.degruyter.com/journal/key/fca/18/3/html.Suche in Google Scholar
[20] S. Victor, R. Malti, H. Garnier, A. Oustaloup, Parameter and differentiation order estimation in fractional models. Automatica 49, No 4 (2013), 926–935.10.1016/j.automatica.2013.01.026Suche in Google Scholar
[21] S. Victor, P. Melchior, M. Pellet, A. Oustaloup, Lung thermal transfer system identification with fractional models. IEEE Trans. Contr. Syst. Tech. 28, No 1 (2020), 172–182.10.1109/TCST.2018.2877606Suche in Google Scholar
© 2021 Diogenes Co., Sofia
Artikel in diesem Heft
- Frontmatter
- Editorial
- FCAA related news, events and books
- Survey Paper
- Towards a unified theory of fractional and nonlocal vector calculus
- Research Paper
- An adaptive memory method for accurate and efficient computation of the Caputo fractional derivative
- Analysis of solutions of some multi-term fractional Bessel equations
- Existence of solutions for the semilinear abstract Cauchy problem of fractional order
- Summability of formal solutions for a family of generalized moment integro-differential equations
- Analysis and fast approximation of a steady-state spatially-dependent distributed-order space-fractional diffusion equation
- Green’s function for the fractional KdV equation on the periodic domain via Mittag–Leffler function
- First order plus fractional diffusive delay modeling: Interconnected discrete systems
- On a solution of a fractional hyper-Bessel differential equation by means of a multi-index special function
- On the decomposition of solutions: From fractional diffusion to fractional Laplacian
- Output error MISO system identification using fractional models
- Short Paper
- Identification of system with distributed-order derivatives
- Short note
- On the Green function of the killed fractional Laplacian on the periodic domain
Artikel in diesem Heft
- Frontmatter
- Editorial
- FCAA related news, events and books
- Survey Paper
- Towards a unified theory of fractional and nonlocal vector calculus
- Research Paper
- An adaptive memory method for accurate and efficient computation of the Caputo fractional derivative
- Analysis of solutions of some multi-term fractional Bessel equations
- Existence of solutions for the semilinear abstract Cauchy problem of fractional order
- Summability of formal solutions for a family of generalized moment integro-differential equations
- Analysis and fast approximation of a steady-state spatially-dependent distributed-order space-fractional diffusion equation
- Green’s function for the fractional KdV equation on the periodic domain via Mittag–Leffler function
- First order plus fractional diffusive delay modeling: Interconnected discrete systems
- On a solution of a fractional hyper-Bessel differential equation by means of a multi-index special function
- On the decomposition of solutions: From fractional diffusion to fractional Laplacian
- Output error MISO system identification using fractional models
- Short Paper
- Identification of system with distributed-order derivatives
- Short note
- On the Green function of the killed fractional Laplacian on the periodic domain