Startseite Green’s function for the fractional KdV equation on the periodic domain via Mittag–Leffler function
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Green’s function for the fractional KdV equation on the periodic domain via Mittag–Leffler function

  • Uyen Le und Dmitry E. Pelinovsky EMAIL logo
Veröffentlicht/Copyright: 28. Oktober 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The linear operator c + (−Δ)α/2, where c > 0 and (−Δ)α/2 is the fractional Laplacian on the periodic domain, arises in the existence of periodic travelling waves in the fractional Korteweg–de Vries equation. We establish a relation of the Green function of this linear operator with the Mittag–Leffler function, which was previously used in the context of the Riemann–Liouville and Caputo fractional derivatives. By using this relation, we prove that the Green function is strictly positive and single-lobe (monotonically decreasing away from the maximum point) for every c > 0 and every α ∈ (0, 2]. On the other hand, we argue from numerical approximations that in the case of α ∈ (2, 4], the Green function is positive and single-lobe for small c and non-positive and non-single lobe for large c.

MSC 2010: 34B27; 35Q53; 42A32

Acknowledgements

The authors are thankful to G. Alfimov, P.G. Kevrekidis, T. Simon and A. Stefanov for relevant suggestions which helped completing this project.

References

1 J. Boyd, Chebyshev and Fourier Spectral Methods. Dover Publishers, New York (2001).Suche in Google Scholar

2 V. Ambrosio, On the existence of periodic solutions for a fractional Schrödinger equation. Proc. AMS 146 (2018), 3767–3775.10.1090/proc/13630Suche in Google Scholar

3 Z. Bai and H. Lü, Positive solutions for boundary value problem of nonlinear fractional differential equation. J. Math. Anal. Appl. 311 (2005), 495–505.10.1016/j.jmaa.2005.02.052Suche in Google Scholar

4 H. Bateman, Higher Transcendental Functions, Vol. III. McGraw-Hill Book Company, New York (1953).Suche in Google Scholar

5 H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differental Equations. Springer, New York (2011).10.1007/978-0-387-70914-7Suche in Google Scholar

6 H. Chen, Existence of periodic traveling-wave solutions of nonlinear, dispersive wave equations. Nonlinearity 17 (2004), 2041–2056.10.1088/0951-7715/17/6/003Suche in Google Scholar

7 H. Chen and J. Bona, Periodic travelling wave solutions of nonlinear dispersive evolution equations. Discr. Cont. Dynam. Syst. 33 (2013), 4841–4873.10.3934/dcds.2013.33.4841Suche in Google Scholar

8 M. Chugunova and D.E. Pelinovsky, Two-pulse solutions in the fifth-order KdV equation: rigorous theory and numerical approximations. Discr. Cont. Dynam. Syst B 8 (2007), 773–800.10.3934/dcdsb.2007.8.773Suche in Google Scholar

9 K. Claassen, M. Johnson, Nondegeneracy and stability of antiperiodic bound states for fractional nonlinear Schrödinger equations. J. Diff. Equs. 266 (2019), 5664–5712.10.1016/j.jde.2018.10.033Suche in Google Scholar

10 R.J. Decker, A. Demirkaya, N.S. Manton, and P.G. Kevrekidis, Kink-antikink interaction forces and bound states in a biharmonic ϕ4 model. J. Phys. A: Math. Theor. 53 (2021), # 375702.10.1088/1751-8121/aba4d2Suche in Google Scholar

11 R.J. Decker, A. Demirkaya, P.G. Kevrekidis, D. Iglesias, J. Severino, and Y. Shavit, Kink dynamics in a nonlinear beam model. Comm. Nonlin. Sci. Numer. Simul. 97 (2021), # 105747.10.1016/j.cnsns.2021.105747Suche in Google Scholar

12 Z. Du and C. Gui, Further study on periodic solutions of elliptic equations with a fractional Laplacian, Nonlinear Analysis 193 (2020), # 111417, 16 pp.10.1016/j.na.2019.01.007Suche in Google Scholar

13 R.L. Frank and E. Lenzmann, Uniqueness of non-linear ground states for fractional Laplacian in ℝ. Acta Math. 210 (2013), 261–318.10.1007/s11511-013-0095-9Suche in Google Scholar

14 R. Garappa, The Mittag–Leffler function. MATLAB Central File Exchange, Retrieved October 31, 2020.Suche in Google Scholar

15 R. Gorenflo, A. Kilbas, F. Mainardi, and S. Rogosin, Mittag- Leffler Functions, Related Topics and Applications. Springer-Verlag, Berlin (2020), Second Ed.10.1007/978-3-662-61550-8Suche in Google Scholar

16 K.A. Gorshkov and L.A. Ostrovsky, Interactions of solitons in nonintegrable systems: Direct perturbation method and applications. Physica D 3 (1981), 428–438.10.1016/0167-2789(81)90146-9Suche in Google Scholar

17 S. Hakkaev and A.G. Stefanov, Stability of periodic waves for the fractional KdV and NLS equations. Proc. Royal Soc. Edinburgh A 151 (2021), 1171–1203.10.1017/prm.2020.54Suche in Google Scholar

18 V.M. Hur and M. Johnson, Stability of periodic traveling waves for nonlinear dispersive equations. SIAM J. Math. Anal. 47 (2015), 3528–3554.10.1137/12090215XSuche in Google Scholar

19 M.A. Johnson, Stability of small periodic waves in fractional KdV-type equations. SIAM J. Math. Anal. 45 (2013), 3168–3293.10.1137/120894397Suche in Google Scholar

20 A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Application of Fractional Differential Equations. Elsevier, New York (2006).Suche in Google Scholar

21 F. Olver, Asymptotics and Special Functions. AKP Classics, Massachusetts (1996).10.1201/9781439864548Suche in Google Scholar

22 U. Le, D. Pelinovsky, Convergence of Petviashvili–s method near periodic waves in the fractional Korteweg–De Vries equation. SIAM J. Math. Anal. 51 (2019), 2850–2883.10.1137/18M1215050Suche in Google Scholar

23 A. Lischke, G. Pang, M. Gulian, F. Song, C. Glusa, X. Zheng, Z. Mao, W. Cai, M.M. Meerschaert, M. Ainsworth, and G.E. Karniadakis, What is the fractional Laplacian? A comparative review with new results. J. Comp. Phys. 404 (2020), # 109009, 62 pp.10.1016/j.jcp.2019.109009Suche in Google Scholar

24 N.S. Manton, An effective Lagrangian for solitons. Nucl. Phys. B 150 (1979), 397–412.10.1016/0550-3213(79)90309-2Suche in Google Scholar

25 M.G Mittag–Leffler, Sur la nouvelle fonction Eα(x). Acad. Sci. Paris 137 (1903), 554–558.Suche in Google Scholar

26 F. Natali, D. Pelinovsky and U. Le, New variational characterization of periodic waves in the fractional Korteweg–de Vries equation. Nonlinearity 33 (2020), 1956–1986.10.1088/1361-6544/ab6a79Suche in Google Scholar

27 F. Natali, D. Pelinovsky and U. Le, Periodic waves in the fractional modified Korteweg–de Vries equation. J. Dyn. Diff. Equat. (2021); DOI: 10.1007/s10884-021-10000-w; see also: Coorection to ...; DOI: 10.1007/s10884-021-10016-2.10.1007/s10884-021-10000-wSuche in Google Scholar

28 J.J. Nieto, Maximum principles for fractional differential equations derived from Mittag–Leffler functions. Appl. Math. Lett. 23 (2010), 1248–1251.10.1016/j.aml.2010.06.007Suche in Google Scholar

29 R. Parker, B. Sandstede, Periodic multi-pulses and spectral stability in Hamiltonian PDEs with symmetry. Preprint arXiv: 2010:05728 (2020).10.1016/j.jde.2022.06.019Suche in Google Scholar

30 I. Podlubny, Fractional Differential Equations. Academic Press, San Diego etc. (1999).Suche in Google Scholar

31 H. Pollard, The complete monotonic character of the Mittag–Leffler function Eα(−x). Bull. Amer. Math. Soc. 54 (1948), 1115–1116.10.1090/S0002-9904-1948-09132-7Suche in Google Scholar

32 A.P. Prudnikov, Y.A. Brychkov, O.I. Marichev, Integrals And Series: Volume 1. Elementary Functions. Taylor & Francis, London (2002).Suche in Google Scholar

33 L. Roncal and P.R. Stinga, Fractional Laplacian on the torus. Commun. Contemp. Math. 18 (2016), # 1550033, 26 pp.10.1142/S0219199715500339Suche in Google Scholar

Received: 2021-01-12
Revised: 2021-09-08
Published Online: 2021-10-28
Published in Print: 2021-10-26

© 2021 Diogenes Co., Sofia

Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/fca-2021-0063/pdf?lang=de
Button zum nach oben scrollen