Startseite Existence of solutions for the semilinear abstract Cauchy problem of fractional order
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Existence of solutions for the semilinear abstract Cauchy problem of fractional order

  • Hernán R. Henríquez EMAIL logo , Verónica Poblete und Juan C. Pozo
Veröffentlicht/Copyright: 28. Oktober 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper we establish the existence of solutions for the nonlinear abstract Cauchy problem of order α ∈ (1, 2), where the fractional derivative is considered in the sense of Caputo. The autonomous and nonautonomous cases are studied. We assume the existence of an α-resolvent family for the homogeneous linear problem. By using this α-resolvent family and appropriate conditions on the forcing function, we study the existence of classical solutions of the nonhomogeneus semilinear problem. The non-autonomous problem is discussed as a perturbation of the autonomous case. We establish a variation of the constants formula for the nonautonomous and nonhomogeneous equation.

Acknowledgements

The authors are very grateful to the editor and the anonymous reviewers for their careful reading of the manuscript, comments and suggestions, which allowed to significantly improve the original version of the text.

H. R. Henríquez was partially supported by Vicerrectoría de Investigación, Desarrollo e Innovación de la Universidad de Santiago under Grant DICYT-USACH 041733HM; V. Poblete was partially supported by project Fondecyt 1191137, and J. C. Pozo was partially supported by project Fondecyt 1181084.

References

[1] S. Abbas, M. Benchohra, G.M. N'Guérékata, Topics in Fractional Differential Equations. Springer Science, New York (2012).10.1007/978-1-4614-4036-9Suche in Google Scholar

[2] J.B. Baillon, Caractére borné de certains générateurs de semi-groupes linéaires dans les espaces de Banach. C. R. Acad. Sci. Paris 290 (1980), 757–760.Suche in Google Scholar

[3] D. Baleanu, J.A.T. Machado, A.C.J. Luo, Fractional Dynamics and Control. Springer, New York (2012).10.1007/978-1-4614-0457-6Suche in Google Scholar

[4] E.G. Bazhlekova, Fractional Evolution Equations in Banach Spaces. Dissertation, Eindhoven University of Technology, Eindhoven (2001).Suche in Google Scholar

[5] E. Bazhlekova, Existence and uniqueness results for fractional evolution equation in Hilbert space. Fract. Calc. Appl. Anal. 15, No 2 (2012), 232–243; 10.2478/s13540-012-0017-0; https://www.degruyter.com/journal/key/fca/15/2/html.Suche in Google Scholar

[6] S. Belarbi, Z. Dahmani, New controllability results for fractional evolution equations in Banach spaces. Acta Universitatis Apulensis 34 (2013), 17–33.Suche in Google Scholar

[7] P. Chen, X. Zhang, Y. Li, Study on fractional non-autonomous evolution equations with delay. Comput. Math. Appl. 73, No 5 (2017), 794–803.10.1016/j.camwa.2017.01.009Suche in Google Scholar

[8] D. Chyan, S. Shaw, S. Piskarev, On maximal regularity and semivariation of cosine operator functions. J. London Math. Soc. 59, No 3 (1999), 1023–1032.10.1112/S0024610799007073Suche in Google Scholar

[9] S. Das, Functional Fractional Calculus. Springer-Verlag, Berlin (2011).10.1007/978-3-642-20545-3Suche in Google Scholar

[10] A. Debbouche, D. Baleanu, Controllability of fractional evolution nonlocal impulsive quasilinear delay integro-differential systems. Comput. Math. Appl. 62 (2011), 1442–1450.10.1016/j.camwa.2011.03.075Suche in Google Scholar

[11] K. Diethelm, The Analysis of Fractional Differential Equations. Springer-Verlag, Berlin (2010).10.1007/978-3-642-14574-2Suche in Google Scholar

[12] N. Dunford, J.T. Schwartz, Linear Operators, Part I. John Wiley & Sons, New York (1988).Suche in Google Scholar

[13] R. Gorenflo, A. Kilbas, F. Mainardi, S. Rogosin, Mittag-Leffler Functions, Related Topics and Applications. Springer, New York (2014), 2nd ed. (2020).10.1007/978-3-662-43930-2Suche in Google Scholar

[14] A. Granas, J. Dugundji, Fixed Point Theory. Springer-Verlag, New York (2003).10.1007/978-0-387-21593-8Suche in Google Scholar

[15] H.J. Haubold, A.M. Mathai, R.K. Saxena, Mittag-Leffler functions and their applications. J. Appl. Math. 2011 (2011), Art. ID 298628, 51 pp.10.1155/2011/298628Suche in Google Scholar

[16] H.R. Henríquez, Introducción a la Integración Vectorial. Editorial Académica Española, ISBN: 978-3-659-04096-2, Saarbrücken (2012).Suche in Google Scholar

[17] R. Hilfer, Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000).10.1142/3779Suche in Google Scholar

[18] C.S. Hönig, The Green function of a linear differential equation with a lateral condition. Bull. Amer. Math. Soc. 79 (1973), 587–593.10.1007/BFb0057546Suche in Google Scholar

[19] C.S. Hönig, The Abstract Riemann-Stieltjes Integral and Its Applications to Linear Differential Equations With Generalized Boundary Conditions. Universidade de São Paulo, São Paulo (1973).Suche in Google Scholar

[20] C.S. Hönig, Semigroups and semivariation. In: Proc. 14 Seminário Brasileiro de Análise (1981), 185–193.Suche in Google Scholar

[21] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations. Vol. 204, North-Holland Mathematics Studies, Elsevier Science B.V., Amsterdam (2006).10.1016/S0304-0208(06)80001-0Suche in Google Scholar

[22] F. Li, M. Li, On maximal regularity and semivariation of α-times resolvent families. Advances in Pure Math. 3 (2013), 680–684.10.4236/apm.2013.38091Suche in Google Scholar

[23] A. Lopushansky, O. Lopushansky, A. Szpila, Fractional abstract Cauchy problem on complex interpolation scales. Fract. Calc. Appl. Anal. 23, No 4 (2020), 1125-1140; 10.1515/fca-2020-0057; https://www.degruyter.com/journal/key/fca/23/4/html.Suche in Google Scholar

[24] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity. An Introduction to Mathematical Models. Imperial College Press, London (2010).10.1142/p614Suche in Google Scholar

[25] F. Mainardi, R. Gorenflo, On Mittag-Leffler-type functions in fractional evolution processes. J. Comput. Appl. Math. 118, No 1-2 (2000), 283–299.10.1016/S0377-0427(00)00294-6Suche in Google Scholar

[26] C.-M. Marle, Mesures et Probabilités. Hermann, Paris (1974).Suche in Google Scholar

[27] Z.-D. Mei, J.-G. Peng, Y. Zhang, A characteristic of fractional resolvents. Fract. Calc. Appl. Anal. 16, No 4 (2013), 777–790; 10.2478/s13540-013-0048-1; https://www.degruyter.com/journal/key/fca/16/4/html.Suche in Google Scholar

[28] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, New York (1983).10.1007/978-1-4612-5561-1Suche in Google Scholar

[29] M. Pierri, D. O'Regan, On non-autonomous abstract nonlinear fractional differential equations. Appl. Anal. 94, No 8 (2015), 879–890.10.1080/00036811.2014.905679Suche in Google Scholar

[30] I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering. Vol. 198. Academic Press, Inc., San Diego (1999).Suche in Google Scholar

[31] J. Prüss, Evolutionary Integral Equations and Applications. Monographs Math. Vol. 87, Birkhäuser Verlag, Basel (1993).10.1007/978-3-0348-8570-6Suche in Google Scholar

[32] H. Thieme, Differentiability of convolutions, integrated semigroups of bounded semi-variation, and the inhomogeneous Cauchy problem. J. Evol. Equ. 8, No 2 (2008), 283–305.10.1007/s00028-007-0355-2Suche in Google Scholar

[33] C.C. Travis, Differentiability of weak solutions to an abstract inhomogeneous differential equation. Proc. Amer. Math. Soc. 82, No 3 (1981), 425–430.10.1090/S0002-9939-1981-0612734-2Suche in Google Scholar

[34] K. Zhang, Existence results for a generalization of the time-fractional diffusion equation with variable coefficients. Bound. Value Probl. 2019, No 10 (2019), 1–11.10.1186/s13661-019-1125-0Suche in Google Scholar

[35] Y. Zhou, Attractivity for fractional evolution equations with almost sectorial operators. Fract. Calc. Appl. Anal. 21, No 3 (2018), 786–800; 10.1515/fca-2018-0041; https://www.degruyter.com/journal/key/fca/21/3/html.Suche in Google Scholar

[36] Y. Zhou, J.W. He, New results on controllability of fractional evolution systems with order α ∈ (1, 2). Evol. Equ. Control Theory. 10, No 3 (2021), 491–509.10.3934/eect.2020077Suche in Google Scholar

Received: 2020-10-29
Revised: 2021-08-17
Published Online: 2021-10-28
Published in Print: 2021-10-26

© 2021 Diogenes Co., Sofia

Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/fca-2021-0060/html?lang=de
Button zum nach oben scrollen