Startseite State-of-art survey of fractional order modeling and estimation methods for lithium-ion batteries
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

State-of-art survey of fractional order modeling and estimation methods for lithium-ion batteries

  • YaNan Wang EMAIL logo , YangQuan Chen und XiaoZhong Liao
Veröffentlicht/Copyright: 31. Dezember 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This paper presents a state-of-art survey of the research on fractional-order (FO) modeling with parameter identification, and FO estimation methods for state of charge (SOC), state of health (SOH), and remaining usage life (RUL) of lithium-ion batteries (LIBs) mainly in recent five years. FO electrochemical models and six different types of FO equivalent circuit models (ECMs) are introduced in detail. Then, the corresponding tuning algorithm for parameters of these FO models are also provided in brief. Moreover, FO estimation methods for SOC are listed and analyzed, mainly including FO observers, and FO Kalman filters (FO-KFs). SOH and RUL estimation is another vital aspect for LIBs ageing and degradation monitoring, thus FO estimation methods proposed in recent research within five years are all listed. Finally, some suggestions that may be helpful for further research are proposed in conclusion.


This paper is dedicated to the memory of late Professor Wen Chen


Acknowledgements

The authors thank for the support of Nature Science Foundation of China (NSFC), under No. 61873035.

References

[1] T. Abuaisha, J. Kertzscher, Fractional-order modelling and parameter identification of electrical coils. Fract. Calc. Appl. Anal. 22, No 1 (2019), 193–216; 10.1515/fca-2019-0013; https://www.degruyter.com/view/j/fca.2019.22.issue-1/issue-files/fca.2019.22.issue-1.xml.Suche in Google Scholar

[2] A. Adhikary, P. Sen, S. Sen, K. Biswas, Design and performance study of dynamic fractors in any of the four quadrants. Circuits Syst. Signal Process. 35, No 6 (2016), 1909–1932.10.1007/s00034-015-0213-3Suche in Google Scholar

[3] S. Alavi, C. Birkl, D. Howey, Time-domain fitting of battery electrochemical impedance models. J. Power Sources288 (2015), 345–352.10.1016/j.jpowsour.2015.04.099Suche in Google Scholar

[4] A. Allagui, T.J. Freeborn, A.S. Elwakil, M.E. Fouda, B.J. Maundy, A.G. Radwan, Z. Said, M.A. Abdelkareem, Review of fractional-order electrical characterization of supercapacitors. J. Power Sources400 (2018), 457–467.10.1016/j.jpowsour.2018.08.047Suche in Google Scholar

[5] A. Alsaedi, B. Ahmad, M. Kirane, A survey of useful inequalities in fractional calculus. Fract. Calc. Appl. Anal. 20, No 3 (2017), 574–594; 10.1515/fca-2017-0031; https://www.degruyter.com/view/j/fca.2017.20.issue-3/issue-files/fca.2017.20.issue-3.xml.Suche in Google Scholar

[6] E. Bazhlekova, Subordination in a class of generalized time-fractional diffusion-wave equations. Fract. Calc. Appl. Anal. 21, No 4 (2018), 869–900; 10.1515/fca-2018-0048; https://www.degruyter.com/view/j/fca.2018.21.issue-4/issue-files/fca.2018.21.issue-4.xml.Suche in Google Scholar

[7] C.R. Birkl, M.R. Roberts, E. McTurk, P.G. Bruce, D.A. Howey, Degradation diagnostics for lithium ion cells. J. Power Sources341 (2017), 373–386.10.1016/j.jpowsour.2016.12.011Suche in Google Scholar

[8] M. Cai, W. Chen, X. Tan, Battery state-of-charge estimation based on a dual unscented Kalman filter and fractional variable-order model. Energies10, No 10 (2017), 1577.10.3390/en10101577Suche in Google Scholar

[9] H. Chaoui, A. El Mejdoubi, H. Gualous, Online parameter identification of lithium-ion batteries with surface temperature variations. IEEE Trans. Veh. Technol. 66, No 3 (2016), 2000–2009.10.1109/TVT.2016.2583478Suche in Google Scholar

[10] H. Chaoui, H. Gualous, Adaptive state of charge estimation of lithium-ion batteries with parameter and thermal uncertainties. IEEE Trans. Cont. Sys. Technol. 25, No 2 (2016), 752–759.10.1109/TCST.2016.2572362Suche in Google Scholar

[11] Y. Chen, D. Huang, Q. Zhu, W. Liu, C. Liu, N. Xiong, A new state of charge estimation algorithm for lithium-ion batteries based on the fractional unscented Kalman filter. Energies10, No 9 (2017), 1313.10.3390/en10091313Suche in Google Scholar

[12] M. Cugnet, J. Sabatier, S. Laruelle, S. Grugeon, B. Sahut, A. Oustaloup, J.-M. Tarascon, On lead-acid-battery resistance and cranking-capability estimation. IEEE Trans. Ind. Electron. 57, No 3 (2009), 909–917.10.1109/TIE.2009.2036643Suche in Google Scholar

[13] L. De Sutter, Y. Firouz, J. De Hoog, N. Omar, J. Van Mierlo, Battery ageing assessment and parametric study of lithium-ion batteries by means of a fractional differential model. Electrochim. Acta305 (2019), 24–36.10.1016/j.electacta.2019.02.104Suche in Google Scholar

[14] A.N. Eddine, B. Huard, J.-D. Gabano, T. Poinot, Initialization of a fractional order identification algorithm applied for lithium-ion battery modeling in time domain. Commun. Nonlinear Sci. Numer. Simul. 59 (2018), 375–386.10.1016/j.cnsns.2017.11.034Suche in Google Scholar

[15] C. Fleischer, W. Waag, H.-M. Heyn, D.U. Sauer, On-line adaptive battery impedance parameter and state estimation considering physical principles in reduced order equivalent circuit battery models part 2. parameter and state estimation. J. Power Sources262 (2014), 457–482.10.1016/j.jpowsour.2014.03.046Suche in Google Scholar

[16] J. Francisco, J. Sabatier, L. Lavigne, F. Guillemard, M. Moze, M. Tari, M. Merveillaut, A. Noury, Lithium-ion battery state of charge estimation using a fractional battery model. In: ICFDA’14 - Intern. Conf. on Fractional Differentiation and Its Applications (2014), 1–6.10.1109/ICFDA.2014.6967413Suche in Google Scholar

[17] T.F. Fuller, M. Doyle, J. Newman, Simulation and optimization of the dual lithium ion insertion cell. J. Electrochem. Soc. 141, No 1 (1994), 1–10.10.1149/1.2054684Suche in Google Scholar

[18] J.-D. Gabano, T. Poinot, B. Huard, Bounded diffusion impedance characterization of battery electrodes using fractional modeling. Commun. Nonlinear Sci. Numer. Simul. 47 (2017), 164–177.10.1016/j.cnsns.2016.11.016Suche in Google Scholar

[19] T. Goh, M. Park, G. Koo, M. Seo, S.W. Kim, State-of-health estimation algorithm of li-ion battery using impedance at low sampling rate. In: IEEE PES APPEEC (2016), 146–150.Suche in Google Scholar

[20] A. Guha, A. Patra, Online estimation of the electrochemical impedance spectrum and remaining usage life of lithium-ion batteries. IEEE Trans. Instrum. Meas. 67, No 8 (2018), 1836–1849.10.1109/TIM.2018.2809138Suche in Google Scholar

[21] J. Hidalgo-Reyes, J.F. Gómez-Aguilar, R.F. Escobar-Jiménez, V.M. Alvarado-Marténez, M. López-López, Classical and fractional-order modeling of equivalent electrical circuits for supercapacitors and batteries, energy management strategies for hybrid systems and methods for the state of charge estimation: A state of the art review. Microelectron. J. 85 (2019), 109–128.10.1016/j.mejo.2019.02.006Suche in Google Scholar

[22] M. Hu, Y. Li, S. Li, C. Fu, D. Qin, Z. Li, Lithium-ion battery modeling and parameter identification based on fractional theory. Energy165 (2018), 153–163.10.1016/j.energy.2018.09.101Suche in Google Scholar

[23] X. Hu, H. Yuan, C. Zou, Z. Li, L. Zhang, Co-estimation of state of charge and state of health for lithium-ion batteries based on fractional-order calculus. IEEE Trans. Veh. Technol. 67, No 11 (2018), 10319–10329.10.1109/TVT.2018.2865664Suche in Google Scholar

[24] R. Huai, Z. Yu, H. Li, Historical data demand in window-based battery parameter identification algorithm. J. Power Sources433 (2019), ID 126686.10.1016/j.jpowsour.2019.05.092Suche in Google Scholar

[25] P.E. Jacob, S.M.M. Alavi, A. Mahdi, S.J. Payne, D.A. Howey, Bayesian inference in non-Markovian state-space models with applications to battery fractional-order systems. IEEE Trans. Cont. Sys. Technol. 26, No 2 (2017), 497–506.10.1109/TCST.2017.2672402Suche in Google Scholar

[26] Y. Jiang, B. Xia, X. Zhao, T. Nguyen, C. Mi, R.A. de Callafon, Data-based fractional differential models for non-linear dynamic modeling of a lithium-ion battery. Energy135 (2017), 171–181.10.1016/j.energy.2017.06.109Suche in Google Scholar

[27] Y. Jiang, B. Xia, X. Zhao, T. Nguyen, C. Mi, R.A. de Callafon, Identification of fractional differential models for lithium-ion polymer battery dynamics. IFAC-PapersOnLine50, No 1 (2017), 405–410.10.1016/j.ifacol.2017.08.184Suche in Google Scholar

[28] D.-K. Kang, H.-C. Shin, Investigation on cell impedance for high-power lithium-ion batteries. J. Solid State Electrochem. 11, No 10 (2007), 1405–1410.10.1007/s10008-007-0371-8Suche in Google Scholar

[29] C. Li, M. Cai, Theory and Numerical Approximations of Fractional Integrals and Derivatives. SIAM (2020); at https://epubs.siam.org/doi/pdf/10.1137/1.9781611975888.fm (2019).Suche in Google Scholar

[30] C. Li, Q. Yi, Modeling and computing of fractional convection equation. Commun. Appl. Math. Comput. (2019), 1–31.10.1007/s42967-019-00019-8Suche in Google Scholar

[31] C. Li, Q. Yi, J. Kurths, Fractional convection. J. Comput. Nonlinear Dyn. 13, No 1 (2018), 011004.10.1115/1.4037414Suche in Google Scholar

[32] C. Li, F. Zeng, Numerical Methods for Fractional Calculus. Chapman and Hall/CRC, (2015).10.1201/b18503Suche in Google Scholar

[33] S. Li, M. Hu, Y. Li, C. Gong, Fractional-order modeling and SOC estimation of lithium-ion battery considering capacity loss. Int. J. Energy Res. 43, No 1 (2019), 417–429.10.1002/er.4275Suche in Google Scholar

[34] X. Li, G. Fan, K. Pan, G. Wei, C. Zhu, G. Rizzoni, M. Canova, A physics-based fractional order model and state of energy estimation for lithium ion batteries. Part i: Model development and observability analysis. J. Power Sources367 (2017), 187–201.10.1016/j.jpowsour.2017.09.049Suche in Google Scholar

[35] Y. Li, C. Wang, J. Gong, A wavelet transform-adaptive unscented Kalman filter approach for state of charge estimation of LiFePo4 battery. Int. J. Energy Res. 42, No 2 (2018), 587–600.10.1002/er.3842Suche in Google Scholar

[36] C. Liu, W. Liu, L. Wang, G. Hu, L. Ma, B. Ren, A new method of modeling and state of charge estimation of the battery. J. Power Sources320 (2016), 1–12.10.1016/j.jpowsour.2016.03.112Suche in Google Scholar

[37] D. Liu, W. Xie, H. Liao, and Y. Peng, An integrated probabilistic approach to lithium-ion battery remaining usage life estimation. IEEE Trans. Instrum. Meas. 64, No 3 (2014), 660–670.Suche in Google Scholar

[38] D. Liu, J. Zhou, D. Pan, Y. Peng, X. Peng, Lithium-ion battery remaining usage life estimation with an optimized relevance vector machine algorithm with incremental learning. Measurement63 (2015), 143–151.10.1016/j.measurement.2014.11.031Suche in Google Scholar

[39] K. Liu, K. Li, Q. Peng, and C. Zhang, A brief review on key technologies in the battery management system of electric vehicles. Front. Mech. Eng. 14, No 1 (2019), 47–64.10.1007/s11465-018-0516-8Suche in Google Scholar

[40] S. Liu, X. Dong, Y. Zhang, A new state of charge estimation method for lithium-ion battery based on the fractional order model. IEEE Access7 (2019), 122949–122954.10.1109/ACCESS.2019.2932142Suche in Google Scholar

[41] X. Lu, H. Li, N. Chen, An indicator for the electrode ageing of lithium-ion batteries using a fractional variable order model. Electrochim. Acta299 (2019), 378–387.10.1016/j.electacta.2018.12.097Suche in Google Scholar

[42] X. Lu, H. Li, J. Xu, S. Chen, N. Chen, Rapid estimation method for state of charge of lithium-ion battery based on fractional continual variable order model. Energies11, No 4 (2018), 714.10.3390/en11040714Suche in Google Scholar

[43] J. Luo, J. Peng, H. He, Lithium-ion battery SOC estimation study based on cubature Kalman filter. Energy Procedia158 (2019), 3421–3426.10.1016/j.egypro.2019.01.933Suche in Google Scholar

[44] Y. Ma, X. Zhou, B. Li, H. Chen, Fractional modeling and SOC estimation of lithium-ion battery. IEEE/CAA J. Automatica Sinica3, No 3 (2016), 281–287.10.1109/JAS.2016.7508803Suche in Google Scholar

[45] J.T. Machado, V. Kiryakova, The chronicles of fractional calculus. Fract. Calc. Appl. Anal. 20, No 2 (2017), 307–336; 10.1515/fca-2017-0017; https://www.degruyter.com/view/j/fca.2017.20.issue-2/issue-files/fca.2017.20.issue-2.xml.Suche in Google Scholar

[46] J.T. Machado, A.M. Lopes, Fractional state space analysis of temperature time series. Fract. Calc. Appl. Anal. 18, No 6 (2015), 1518–1536; 10.1515/fca-2015-0088; https://www.degruyter.com/view/j/fca.2015.18.issue-6/issue-files/fca.2015.18.issue-6.xml.Suche in Google Scholar

[47] E. Martinez-Laserna, E. Sarasketa-Zabala, I.V. Sarria, D.-I. Stroe, M. Swierczynski, A. Warnecke, J.-M. Timmermans, S. Goutam, N. Omar, P. Rodriguez, Technical viability of battery second life: A study from the ageing perspective. IEEE Trans. Ind. Appl. 54, No 3 (2018), 2703–2713.10.1109/TIA.2018.2801262Suche in Google Scholar

[48] K.S. Mawonou, A. Eddahech, D. Dumur, D. Beauvois, E. Godoy, Improved state of charge estimation for li-ion batteries using fractional order extended Kalman filter. J. Power Sources435 (2019), ID 226710.10.1016/j.jpowsour.2019.226710Suche in Google Scholar

[49] S. Mohajer, J. Sabatier, P. Lanusse, O. Cois, A fractional-order electro-thermal ageing model for lifetime enhancement of lithium-ion batteries. IFAC-PapersOnLine51, No 2 (2018), 220–225.10.1016/j.ifacol.2018.03.038Suche in Google Scholar

[50] M. Montaru, S. Pelissier, Frequency and temporal identification of a li-ion polymer battery model using fractional impedance. Oil & Gas Scie. Tech.–Revue de l’Institut Français du Pétrole65, No 1 (2010), 67–78.10.2516/ogst/2009056Suche in Google Scholar

[51] H. Mu, R. Xiong, H. Zheng, Y. Chang, Z. Chen, A novel fractional order model based state-of-charge estimation method for lithium-ion battery. Appl. Energy207 (2017), 384–393.10.1016/j.apenergy.2017.07.003Suche in Google Scholar

[52] A. Mystkowski and A. Zolotas, PLC-based discrete fractional-order control design for an industrial-oriented water tank volume system with input delay. Fract. Calc. Appl. Anal. 21, No 4 (2018), 1005–1026; 10.1515/fca-2018-0055; https://www.degruyter.com/view/j/fca.2018.21.issue-4/issue-files/fca.2018.21.issue-4.xml.Suche in Google Scholar

[53] A. Nasser-Eddine, B. Huard, J.-D. Gabano, T. Poinot, A two steps method for electrochemical impedance modeling using fractional order system in time and frequency domains. Control Eng. Practice86 (2019), 96–104.10.1016/j.conengprac.2019.03.001Suche in Google Scholar

[54] H. Perez, S. Dey, X. Hu, S. Moura, Optimal charging of li-ion batteries via a single particle model with electrolyte and thermal dynamics. J. Electrochem. Soc. 164, No 7 (2017), A1679–A1687.10.1149/2.1301707jesSuche in Google Scholar

[55] H. Rafeiro, S. Samko, Fractional integrals and derivatives: mapping properties. Fract. Calc. Appl. Anal. 19, No 3 (2016), 580–607; 10.1515/fca-2016-0032; https://www.degruyter.com/view/j/fca.2016.19.issue-3/issue-files/fca.2016.19.issue-3.xml.Suche in Google Scholar

[56] S.K. Rahimian, S. Rayman, R.E. White, Extension of physics-based single particle model for higher charge-discharge rates. J. Power Sources224 (2013), 180–194.10.1016/j.jpowsour.2012.09.084Suche in Google Scholar

[57] J. Rifkin, The third industrial revolution: a radical new sharing Economy. https://www.singularityweblog.com/third-industrial-revolution/ (2018).Suche in Google Scholar

[58] J. Sabatier, M. Aoun, A. Oustaloup, G. Grégoire, F. Ragot, P. Roy, Fractional system identification for lead acid battery state of charge estimation. Signal Process. 86, No 10 (2006), 2645–2657.10.1016/j.sigpro.2006.02.030Suche in Google Scholar

[59] J. Sabatier, M. Cugnet, S. Laruelle, S. Grugeon, B. Sahut, A. Oustaloup, J. Tarascon, A fractional order model for lead-acid battery crankability estimation. Commun. Nonlinear Sci. Numer. Simul. 15, No 5 (2010), 1308–1317.10.1016/j.cnsns.2009.05.067Suche in Google Scholar

[60] J. Sabatier, J.M. Francisco, F. Guillemard, L. Lavigne, M. Moze, M. Merveillaut, Lithium-ion batteries modeling: A simple fractional differentiation based model and its associated parameters estimation method. Signal Process. 107 (2015), 290–301.10.1016/j.sigpro.2014.06.008Suche in Google Scholar

[61] J. Sabatier, F. Guillemard, L. Lavigne, A. Noury, M. Merveillaut, J.M. Francico, Fractional models of lithium-ion batteries with application to state of charge and ageing estimation. In: Informatics in Control, Automation and Robotics, Springer (2018), 55–72.10.1007/978-3-319-55011-4_3Suche in Google Scholar

[62] J. Sabatier, M. Merveillaut, J.M. Francisco, F. Guillemard, D. Porcelatto, Fractional models for lithium-ion batteries. In: Proc. of the European Control Conference (2013), 3458–3463.10.23919/ECC.2013.6669340Suche in Google Scholar

[63] J. Sabatier, M. Merveillaut, J.M. Francisco, F. Guillemard, D. Porcelatto, Lithium-ion batteries modeling involving fractional differentiation. J. Power Sources262 (2014), 36–43.10.1016/j.jpowsour.2014.02.071Suche in Google Scholar

[64] H. Sun, A. Chang, Y. Zhang, W. Chen, A review on variable-order fractional differential equations: mathematical foundations, physical models, numerical methods and applications. Fract. Calc. Appl. Anal. 22, No 1 (2019), 27–59; 10.1515/fca-2019-0003; https://www.degruyter.com/view/j/fca.2019.22.issue-1/issue-files/fca.2019.22.issue-1.xml.Suche in Google Scholar

[65] Y. Sun, Y. Li, M. Yu, Z. Zhou, Q. Zhang, B. Duan, Y. Shang, C. Zhang, Variable fractional order-a comprehensive evaluation indicator of lithium-ion batteries. J. Power Sources (2019), 10.1016/j.jpowsour.2019.227411.Suche in Google Scholar

[66] P. Systems, Lithium-ion battery advantages. https://www.powertechsystems.eu/home/tech-corner/lithium-ion-battery-advantages/ (2019).Suche in Google Scholar

[67] T. Takamatsu, H. Ohmori, State and parameter estimation of lithium-ion battery by kreisselmeier-type adaptive observer for fractional calculus system. In: Proc. of the 54th Annual Conference SICE of Japan (2015), 86–90.10.1109/SICE.2015.7285394Suche in Google Scholar

[68] T. Takamatsu, H. Ohmori, Online parameter estimation for lithium-ion battery by using adaptive observer for fractional-order system. Electr. Commun. Jpn. 101, No 3 (2018), 80–89.10.1002/ecj.12040Suche in Google Scholar

[69] X. Tang, Y. Wang, C. Zou, K. Yao, Y. Xia, F. Gao, A novel framework for lithium-ion battery modeling considering uncertainties of temperature and ageing. Energy Conv. Manag. 180 (2019), 162–170.10.1016/j.enconman.2018.10.082Suche in Google Scholar

[70] J. Tian, R. Xiong, Q. Yu, Fractional-order model-based incremental capacity analysis for degradation state recognition of lithium-ion batteries. IEEE Trans. Ind. Electron. 66, No 2 (2018), 1576–1584.10.1109/TIE.2018.2798606Suche in Google Scholar

[71] B. Wang, S.E. Li, H. Peng, Z. Liu, Fractional-order modeling and parameter identification for lithium-ion batteries. J. Power Sources293 (2015), 151–161.10.1016/j.jpowsour.2015.05.059Suche in Google Scholar

[72] B. Wang, Z. Liu, S.E. Li, S.J. Moura, H. Peng, State-of-charge estimation for lithium-ion batteries based on a nonlinear fractional model. IEEE Trans. Cont. Sys. Technol. 25, No 1 (2016), 3–11.10.1109/TCST.2016.2557221Suche in Google Scholar

[73] C. Wang, Q. Huang, R. Ling, Battery SOC estimating using a fractional order unscented Kalman filter. In: Proc. of the Chinese Automation Congress (2015), 1268–1273.Suche in Google Scholar

[74] J. Wang, L. Zhang, D. Xu, P. Zhang, G. Zhang, A simplified fractional order equivalent circuit model and adaptive online parameter identification method for lithium-ion batteries. Math. Probl. Eng. 2019 (2019), ID 6019236.10.1155/2019/6019236Suche in Google Scholar

[75] Y. Wang, Y. Chen, and X. Liao, Applied fractional calculus and second-life battery characterization. In: Proc. of the 1st Fractional Order Systems and Controls Conference (FOSCC)2019 (2019), Accepted.Suche in Google Scholar

[76] Y. Wang, H. Fang, L. Zhou, T. Wada, Revisiting the state-of-charge estimation for lithium-ion batteries: A methodical investigation of the extended Kalman filter approach. IEEE Control Syst. Mag. 37, No 4 (2017), 73–96.10.1109/MCS.2017.2696761Suche in Google Scholar

[77] N. Wassiliadis, J. Adermann, A. Frericks, M. Pak, C. Reiter, B. Lohmann, M. Lienkamp, Revisiting the dual extended Kalman filter for battery state-of-charge and state-of-health estimation: A use-case life cycle analysis. J. Energy Storage19 (2018), 73–87.10.1016/j.est.2018.07.006Suche in Google Scholar

[78] Z. Wei, B. Xiong, D. Ji, K. J. Tseng, Online state of charge and capacity dual estimation with a multi-timescale estimator for lithium-ion battery. Energy Procedia105 (2017), 2953–2958.10.1016/j.egypro.2017.03.692Suche in Google Scholar

[79] R. Xiao, J. Shen, X. Li, W. Yan, E. Pan, Z. Chen, Comparisons of modeling and state of charge estimation for lithium-ion battery based on fractional order and integral order methods. Energies9, No 3 (2016), 184.10.3390/en9030184Suche in Google Scholar

[80] R. Xiong, J. Cao, Q. Yu, H. He, F. Sun, Critical review on the battery state of charge estimation methods for electric vehicles. IEEE Access6 (2017), 1832–1843.10.1109/ACCESS.2017.2780258Suche in Google Scholar

[81] R. Xiong, J. Tian, H. Mu, C. Wang, A systematic model-based degradation behavior recognition and health monitoring method for lithium-ion batteries. Appl. Energy207 (2017), 372–383.10.1016/j.apenergy.2017.05.124Suche in Google Scholar

[82] R. Xiong, J. Tian, W. Shen, F. Sun, A novel fractional order model for state of charge estimation in lithium ion batteries. IEEE Trans. Veh. Technol. 68, No 5 (2019), 4130–4139.10.1109/TVT.2018.2880085Suche in Google Scholar

[83] R. Yamin, A. Rachid, Embedded state of charge and state of health estimator based on Kalman filter for electric scooter battery management system. In: Proc. of the IEEE ICCE-Berlin (2014), 440–444.10.1109/ICCE-Berlin.2014.7034282Suche in Google Scholar

[84] Q. Yang, J. Xu, B. Cao, X. Li, A simplified fractional order impedance model and parameter identification method for lithium-ion batteries. PloS One12, No 2 (2017), e0172424.10.1371/journal.pone.0172424Suche in Google Scholar PubMed PubMed Central

[85] M. Ye, H. Guo, B. Cao, A model-based adaptive state of charge estimator for a lithium-ion battery using an improved adaptive particle filter. Appl. Energy190 (2017), 740–748.10.1016/j.apenergy.2016.12.133Suche in Google Scholar

[86] S. Yuan, H. Wu, X. Zhang, C. Yin, Online estimation of electrochemical impedance spectra for lithium-ion batteries via discrete fractional order model. In: Proc. of the IEEE Vehicle Power and Propulsion Conf. (VPPC) (2013), 1–6.10.1109/VPPC.2013.6671694Suche in Google Scholar

[87] C. Zhang, Y. Zhang, Y. Li, A novel battery state-of-health estimation method for hybrid electric vehicles. IEEE-ASME Trans. Mechatron. 20, No 5 (2015), 2604–2612.10.1109/TMECH.2014.2371919Suche in Google Scholar

[88] L. Zhang, X. Hu, Z. Wang, F. Sun, D.G. Dorrell, A review of supercapacitor modeling, estimation, and applications: A control/management perspective. Sust. Energ. Rev. 81 (2018), 1868–1878.10.1016/j.rser.2017.05.283Suche in Google Scholar

[89] Q. Zhang, N. Cui, Y. Shang, G. Xing, C. Zhang, Relevance between fractional-order hybrid model and unified equivalent circuit model of electric vehicle power battery. Science China Information Sciences61, No 7 (2018), 70208–1.10.1007/s11432-017-9364-2Suche in Google Scholar

[90] Q. Zhang, Y. Li, Y. Shang, B. Duan, N. Cui, C. Zhang, A fractional-order kinetic battery model of lithium-ion batteries considering a nonlinear capacity. Electronics8, No 4 (2019), 394.10.3390/electronics8040394Suche in Google Scholar

[91] Q. Zhang, Y. Shang, Y. Li, N. Cui, B. Duan, C. Zhang, A novel fractional variable-order equivalent circuit model and parameter identification of electric vehicle li-ion batteries. ISA Trans. (2019), https://doi.org/10.1016/j.isatra.2019.08.004.Suche in Google Scholar PubMed

[92] R. Zhang, B. Xia, B. Li, L. Cao, Y. Lai, W. Zheng, H. Wang, W. Wang, State of the art of lithium-ion battery SOC estimation for electrical vehicles. Energies11, No 7 (2018), 1820.10.3390/en11071820Suche in Google Scholar

[93] Y. Zhao, Y. Li, F. Zhou, Z. Zhou, Y. Chen, An iterative learning approach to identify fractional order KiBaM model. IEEE/CAA J. of Automatica Sinica4, No 2 (2017), 322–331.10.1109/JAS.2017.7510358Suche in Google Scholar

[94] F. Zheng, Y. Xing, J. Jiang, B. Sun, J. Kim, M. Pecht, Influence of different open circuit voltage tests on state of charge online estimation for lithium-ion batteries. Appl. Energy183 (2016), 513–525.10.1016/j.apenergy.2016.09.010Suche in Google Scholar

[95] F. Zhong, H. Li, Q. Zhong, An approach for SOC estimation based on sliding mode observer and fractional order equivalent circuit model of lithium-ion batteries. In: Proc. of the IEEE Intern. Conf. Mechatronics and Automation (2014), 1497–1503.10.1109/ICMA.2014.6885921Suche in Google Scholar

[96] F. Zhong, H. Li, S. Zhong, Q. Zhong, C. Yin, An SOC estimation approach based on adaptive sliding mode observer and fractional order equivalent circuit model for lithium-ion batteries. Commun. Nonlinear Sci. Numer. Simul. 24, No 1-3 (2015), 127–144.10.1016/j.cnsns.2014.12.015Suche in Google Scholar

[97] Q. Zhong, F. Zhong, J. Cheng, H. Li, S. Zhong, State of charge estimation of lithium-ion batteries using fractional order sliding mode observer. ISA Trans. 66 (2017), 448–459.10.1016/j.isatra.2016.09.017Suche in Google Scholar PubMed

[98] D. Zhou, K. Zhang, A. Ravey, F. Gao, A. Miraoui, Parameter sensitivity analysis for fractional-order modeling of lithium-ion batteries. Energies9, No 3 (2016), 123.10.3390/en9030123Suche in Google Scholar

[99] Q. Zhu, M. Zheng, A state of charge estimation approach based on fractional order adaptive extended Kalman filter for lithium-ion batteries. In: Proc. of the IEEE 7th DDCLS (2018), 271–276.Suche in Google Scholar

[100] C. Zou, X. Hu, S. Dey, L. Zhang, X. Tang, Nonlinear fractional-order estimator with guaranteed robustness and stability for lithium-ion batteries. IEEE Trans. Ind. Electron. 65, No 7 (2017), 5951–5961.10.1109/TIE.2017.2782691Suche in Google Scholar

[101] C. Zou, L. Zhang, X. Hu, Z. Wang, T. Wik, M. Pecht, A review of fractional-order techniques applied to lithium-ion batteries, lead-acid batteries, and supercapacitors. J. Power Sources390 (2018), 286–296.10.1016/j.jpowsour.2018.04.033Suche in Google Scholar

[102] Y. Zou, S. E. Li, B. Shao, B. Wang, State-space model with non-integer order derivatives for lithium-ion battery. Appl. Energy161 (2016), 330–336.10.1016/j.apenergy.2015.10.025Suche in Google Scholar

Received: 2019-07-15
Published Online: 2019-12-31
Published in Print: 2019-12-18

© 2019 Diogenes Co., Sofia

Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/fca-2019-0076/html?lang=de
Button zum nach oben scrollen