Startseite Some further results of the laplace transform for variable–order fractional difference equations
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Some further results of the laplace transform for variable–order fractional difference equations

  • Dumitru Baleanu EMAIL logo und Guo–Cheng Wu
Veröffentlicht/Copyright: 31. Dezember 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The Laplace transform is important for exact solutions of linear differential equations and frequency response analysis methods. In comparison with the continuous–time systems, less results can be available for fractional difference equations. This study provides some fundamental results of two kinds of fractional difference equations by use of the Laplace transform. Some discrete Mittag–Leffler functions are defined and their Laplace transforms are given. Furthermore, a class of variable–order and short memory linear fractional difference equations are proposed and the exact solutions are obtained.


This paper is dedicated to the memory of late Professor Wen Chen


Acknowledgments

The first author (D. B.) is supported by the Scientific and Technological Research Council of Turkey (TUBTAK) (Grant No. TBAG–117F473). The second author Guo–Cheng Wu is supported by Sichuan Science and Technology Support Program (Grant No. 2018JY0120).

References

[1] T. Abdeljawad, On Riemann and Caputo fractional differences. Comput. Math. Appl. 62 (2011), 1602–1611.10.1016/j.camwa.2011.03.036Suche in Google Scholar

[2] R. Abu–Saris, Q. Al–Mdallal, On the asymptotic stability of linear system of fractional-order difference equations. Fract. Calc. Appl. Anal. 16, No 3 (2013), 613–629; 10.2478/s13540-013-0039-2; https://www.degruyter.com/view/j/fca.2013.16.issue-3/issue-files/fca.2013.16.issue-3.xml.Suche in Google Scholar

[3] G.A. Anastassiou, About discrete fractional calculus with inequalities. In: Intelligent Mathematics: Computational Analysis, Springer (2011), 575–585.10.1007/978-3-642-17098-0_35Suche in Google Scholar

[4] F.M. Atici, P.W. Eloe, Initial value problems in discrete fractional calculus. Proc. Amer. Math. Soc. 137 (2007), 981–989.10.1090/S0002-9939-08-09626-3Suche in Google Scholar

[5] D. Baleanu, G.C. Wu, Y.R. Bai, F.L. Chen, Stability analysis of Caputo–like discrete fractional systems. Commun. Nonlinear Sci. Numer. Simul. 48 (2017), 520–530.10.1016/j.cnsns.2017.01.002Suche in Google Scholar

[6] N.R.O. Bastos, R.A.C. Ferreira, D.F.M. Torres, Discrete–time fractional variational problems. Sign. Proc. 91 (2011), 513–524.10.1016/j.sigpro.2010.05.001Suche in Google Scholar

[7] J. Cermak, I. Gyori, L. Nechvatal, On explicit stability conditions for a linear fractional difference system. Fract. Calc. Appl. Anal. 18, No 3 (2015), 651–672; 10.1515/fca-2015-0040; https://www.degruyter.com/view/j/fca.2015.18.issue-3/issue-files/fca.2015.18.issue-3.xml.Suche in Google Scholar

[8] F. Chen, X. Luo, Y. Zhou, Existence results for nonlinear fractional difference equation. Adv. Differ. Equ. 2011 (2011), # 713201, 12 pp.10.1155/2011/713201Suche in Google Scholar

[9] C. Goodrich, A.C. Peterson, Discrete Fractional Calculus. Springer (2015).10.1007/978-3-319-25562-0Suche in Google Scholar

[10] M.T. Holm, The Theory of Discrete Fractional Calculus: Development and Application. University of Nebraska–Lincoln, PhD Thesis (2011).Suche in Google Scholar

[11] X.Y. Li, J. Wei, Solving fractional difference equations using the Laplace transform method. Abstr. Appl. Anal. 2014 (2014), # 230850, 6 pp.10.1155/2014/230850Suche in Google Scholar

[12] H.G. Sun, A. Chang, Y. Zhou, W. Chen, A review on variable-order fractional differential equations: mathematical foundations, physical models, numerical methods and applications. Fract. Calc. Appl. Anal. 22, No 1 (2019), 27–59; 10.1515/fca-2019-0003; https://www.degruyter.com/view/j/fca.2019.22.issue-1/issue-files/fca.2019.22.issue-1.xml.Suche in Google Scholar

[13] H.G. Sun, W. Chen, Y. Chen, Variable–order fractional differential operators in anomalous diffusion modeling. Physica A388 (2009), 4586–4592.10.1016/j.physa.2009.07.024Suche in Google Scholar

[14] H.G. Sun, W. Chen, C. Li, Y. Chen, Finite difference schemes for variable–order time fractional diffusion equation. Int. J. Bifurcat. Chaos22 (2012), # 1250085.10.1142/S021812741250085XSuche in Google Scholar

[15] H.G. Sun, W. Chen, H. Sheng, Y. Chen, On mean square displacement behaviors of anomalous diffusions with variable and random orders. Phys. Lett. A374 (2010), 906–910.10.1016/j.physleta.2009.12.021Suche in Google Scholar

[16] G.C. Wu, T. Abdeljawad, D. Baleanu, K.T. Wu, Mittag–Leffler stability analysis of fractional discrete–time neural networks via fixed point technique. Nonlinear Anal.: Model. Contr. 24 (2019), 919–936.10.15388/NA.2019.6.5Suche in Google Scholar

[17] G.C. Wu, D. Baleanu, S.D. Zeng, Z.G. Deng, Discrete fractional diffusion equation. Nonlinear Dyn. 80 (2015), 281–286.10.1007/s11071-014-1867-2Suche in Google Scholar

[18] G.C. Wu, Z.G. Deng, D. Baleanu, D.Q. Zeng, New variable–order fractional chaotic systems for fast image encryption. Chaos29 (2019), # 083103, 11 pp.10.1063/1.5096645Suche in Google Scholar PubMed

[19] G.C. Wu, D.Q. Zeng, D. Baleanu, Fractional impulsive differential equations: Exact solutions, integral equations and short memory case. Fract. Calc. Appl. Anal. 22, No 1 (2019), 180–192; 10.1515/fca-2019-0012; https://www.degruyter.com/view/j/fca.2019.22.issue-1/issue-files/fca.2019.22.issue-1.xml.Suche in Google Scholar

Received: 2019-07-18
Published Online: 2019-12-31
Published in Print: 2019-12-18

© 2019 Diogenes Co., Sofia

Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/fca-2019-0084/html
Button zum nach oben scrollen