Startseite High-order algorithms for riesz derivative and their applications (IV)
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

High-order algorithms for riesz derivative and their applications (IV)

  • Hengfei Ding EMAIL logo und Changpin Li
Veröffentlicht/Copyright: 31. Dezember 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The main goal of this article is to establish a new 4th-order numerical differential formula to approximate Riesz derivatives which is obtained by means of a newly established generating function. Then the derived formula is used to solve the Riesz space fractional advection-dispersion equation. Meanwhile, by the energy method, it is proved that the difference scheme is unconditionally stable and convergent with order 𝓞(τ2 + h4). Finally, several numerical examples are given to show that the numerical convergence orders of the numerical differential formulas and the finite difference scheme are in line with the theoretical analysis.

MSC 2010: 65A05; 65D15; 65D25; 65M06; 65M12

This paper is dedicated to the memory of late Professor Wen Chen


Acknowledgements

The work was partially supported by the National Natural Science Foundation of China (Grant Nos. 11561060, 11671251 and 11961057).

References

[1] A.A. Alikhanov, A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 280 (2015), 424–438.10.1016/j.jcp.2014.09.031Suche in Google Scholar

[2] S. Arshad, D. Baleanu, J. Huang, M. Qurashi, Y. Tang, Y. Zhao, Finite difference method for time-space fractional advection-diffusion equations with Riesz derivative. Entropy20 (2018), 321.10.3390/e20050321Suche in Google Scholar PubMed PubMed Central

[3] D.A. Benson, S.W. Wheatcraft, M.M. Meerschaert, Application of a fractional advection-dispersion equation. Water Resour. Res. 36, No 6 (2000), 1403–1412.10.1029/2000WR900031Suche in Google Scholar

[4] M. Cai, C.P. Li, On Riesz derivative. Fract. Calc. Appl. Anal. 22, No 2 (2019), 287–301; 10.1515/fca-2019-0019;https://www.degruyter.com/view/j/fca.2019.22.issue-2/issue-files/fca.2019.22.issue-2.xmlSuche in Google Scholar

[5] M. Cai, C.P. Li, Regularity of the solution to Riesz-type fractional differential equation. Integral Transform. Spec. Funct. 30, No 9 (2019), 711–742.10.1080/10652469.2019.1613988Suche in Google Scholar

[6] J. Cao, G. Song, J. Wang, Q. Shi, S. Sun, Blow-up and global solutions for a class of time fractional nonlinear reaction-diffusion equation with weakly spatial source. Appl. Math. Lett. 91 (2019), 201–206.10.1016/j.aml.2018.12.020Suche in Google Scholar

[7] F. Chen, D. Baleanu, G.C. Wu, Existence results of fractional differential equations with Riesz-Caputo derivative. The European Phys. J. Special Topics226, Nos. 16-18 (2017), 3411–3425.10.1140/epjst/e2018-00030-6Suche in Google Scholar

[8] H.F. Ding, C.P. Li, Y.Q. Chen, High-order algorithms for Riesz derivative and their applications (I). Abstr. Appl. Anal. 2014 (2014), Art. ID 653797, 17 pp.10.1155/2014/653797Suche in Google Scholar

[9] H.F. Ding, C.P. Li, Y.Q. Chen, High-order algorithms for Riesz derivative and their applications (II). J. Comput. Phys. 293 (2015), 218–237.10.1016/j.jcp.2014.06.007Suche in Google Scholar

[10] H.F. Ding, C.P. Li, High-order algorithms for Riesz derivaive and their applications (III). Fract. Calc. Appl. Anal. 19, No 1 (2016), 19–55; 10.1515/fca-2016-0003; https://www.degruyter.com/view/j/fca.2016.19.issue-1/issue-files/fca.2016.19.issue-1.xmlSuche in Google Scholar

[11] H.F. Ding, C.P. Li, Fractional-compact numerical algorithms for Riesz spatial fractional reaction-dispersion equations. Fract. Calc. Appl. Anal. 20, No 3 (2017), 722–764; 10.1515/fca-2017-0038; https://www.degruyter.com/view/j/fca.2017.20.issue-3/issue-files/fca.2017.20.issue-3.xmlSuche in Google Scholar

[12] R. Hilfer, Applications of Fractional Calculus in Physics. World Science Press, Singapore (2000).10.1142/3779Suche in Google Scholar

[13] B. Jin, B. Li, Z. Zhou, Correction of high-order BDF convolution quadrature for fractional evolution equations. SIAM J. Sci. Comput. 39, No 6 (2017), A3129–A3152.10.1137/17M1118816Suche in Google Scholar

[14] R. Lazarov, P. Vabishchevich, A numerical study of the homogeneous elliptic equation with fractional boundary conditions. Fract. Calc. Appl. Anal. 20, No 2 (2017), 337–351; 10.1515/fca-2017-0018; https://www.degruyter.com/view/j/fca.2017.20.issue-2/issue-files/fca.2017.20.issue-2.xmlSuche in Google Scholar

[15] C.P. Li, A. Chen, Numerical methods for fractional partial differential equations. Int. J. Comput. Math. 95, No 6-7 (2018), 1048–1099.10.1080/00207160.2017.1343941Suche in Google Scholar

[16] C.P. Li, Q. Yi, Modeling and computing of fractional convection equation. Commun. Appl. Math. Comput. 1, No 4 (2019), 565–595.10.1007/s42967-019-00019-8Suche in Google Scholar

[17] C.P. Li, Q. Yi, J. Kurths, Fractional convection. J. Comput. Nonlinear Dynam. 13, No 1 (2018), Art. # 011004.10.1115/1.4037414Suche in Google Scholar

[18] C.P. Li, F.H. Zeng, Numerical Methods for Fractional Calculus. Chapman and Hall/CRC Press, Boca Raton (2015).10.1201/b18503Suche in Google Scholar

[19] C.P. Li, Z.G. Zhao, Introduction to fractional integrability and differentiability. Eur. Phys. J.-Spec. Top. 193, No 1 (2011), 5–26.10.1140/epjst/e2011-01378-2Suche in Google Scholar

[20] Z.Q. Li, Y.B. Yan, Error estimates of high-order numerical methods for solving time fractional partial differential equations, Fract. Calc. Appl. Anal. 21, No 3 (2018), 746–774; 10.1515/fca-2018-0039; https://www.degruyter.com/view/j/fca.2018.21.issue-3/issue-files/fca.2018.21.issue-3.xmlSuche in Google Scholar

[21] R. Metzler, J. Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, No 1 (2000), 1–77.10.1016/S0370-1573(00)00070-3Suche in Google Scholar

[22] F.L. Nave, B. Mazur, Reading Bombelli. Math. Intell. 24, No 1 (2002), 12–21.10.1007/BF03025306Suche in Google Scholar

[23] R.W.D. Nickalls, A new approach to solving the cubic: Cardano’s solution revealed. Math. Gaz. 77, No 480 (1993), 354–359.10.2307/3619777Suche in Google Scholar

[24] R.W.D. Nickalls, Viete, Descartes and the cubic equation. Math. Gaz. 90, No 518 (2006), 203–208.10.1017/S0025557200179598Suche in Google Scholar

[25] I. Podlubny, Fractional Differential Equations. Acad. Press, N. York (1999).Suche in Google Scholar

[26] L.B. Rall, Automatic Differentiation: Techniques and Applications. Springer Verlag, Berlin-Heidelberg-New York (1981).10.1007/3-540-10861-0Suche in Google Scholar

[27] S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Sci. Publ., Amsterdam (1993).Suche in Google Scholar

[28] W.Y. Tian, H. Zhou, W.H. Deng, A class of second order difference approximation for solving space fractional diffusion equations. Math. Comput. 84 (2015), 1703–1727.10.1090/S0025-5718-2015-02917-2Suche in Google Scholar

[29] V.K. Tuan, R. Gorenflo, Extrapolation to the limit for numerical fractional differentiation. Z. Agnew. Math. Mech. 75 (1995), 646–648.10.1002/zamm.19950750826Suche in Google Scholar

[30] Z. Wang, S. Vong, Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation. J. Comput. Phys. 277 (2014), 1–15.10.1016/j.jcp.2014.08.012Suche in Google Scholar

[31] W.S. Zhang, Finite Difference Methods for Partial Differential Equations in Science Computation. Higher Education Press, Beijin (2006).Suche in Google Scholar

[32] Y. Zhang, X. Yu, X. Li, J.F. Kelly, H.G. Sun, C.M. Zheng, Impact of absorbing and reflective boundaries on fractional derivative models: Quantification, evaluation and application. Adv. Water Resour. 128 (2019), 129–144.10.1016/j.advwatres.2019.02.011Suche in Google Scholar

Received: 2019-04-15
Published Online: 2019-12-31
Published in Print: 2019-12-18

© 2019 Diogenes Co., Sofia

Heruntergeladen am 24.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/fca-2019-0080/html
Button zum nach oben scrollen