Startseite Wirtschaftswissenschaften From Quantile Functions to Subquantile Functions and Their Applications
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

From Quantile Functions to Subquantile Functions and Their Applications

  • N. Unnikrishnan Nair ORCID logo und S. M. Sunoj ORCID logo EMAIL logo
Veröffentlicht/Copyright: 28. Oktober 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In the present paper we consider the notion of subquantile functions of order n and discuss their applications in entropy and reliability analysis. Subquantiles appear as reversed mean life in reliability and conditional values at risk in risk analysis and are closely related to many other concepts in different disciplines. A systematic study of this concept is hoped to get better insight into the investigations made in related topics in other areas like reliability, risk, income analysis, etc. We propose some results that could be of applications in these areas.

MSC 2020: 62N05; 94A17

Acknowledgements

We thank the referee for his stimulating suggestions that helped us to provide an improved presentation.

References

[1] C. Acerbi, Spectral measures of risk: A coherent representation of subjective risk aversion, J. Banking Finance 26 (2002), no. 7, 1505–1518. 10.1016/S0378-4266(02)00281-9Suche in Google Scholar

[2] B. Al-Zahrani and M. Al-Sobhi, On some properties of the reversed variance residual lifetime, Int. J. Statist. Probab. 4 (2015), no. 2, 24–32. 10.5539/ijsp.v4n2p24Suche in Google Scholar

[3] S. Baratpour and A. H. Khammar, A quantile-based generalized dynamic cumulative measure of entropy, Comm. Statist. Theory Methods 47 (2018), no. 13, 3104–3117. 10.1080/03610926.2017.1348520Suche in Google Scholar

[4] H. W. Block, T. H. Savits and H. Singh, The reversed hazard rate function, Probab. Engrg. Inform. Sci. 12 (1998), no. 1, 69–90. 10.1017/S0269964800005064Suche in Google Scholar

[5] M. Denuit, J. Dhaene, M. Goovaerts and R. Kaas, Actuarial Theory for Dependent Risks: Measures, Orders and Models, John Wiley & Sons, Chichester, 2006. 10.1002/0470016450Suche in Google Scholar

[6] A. Di Crescenzo and M. Longobardi, Entropy-based measure of uncertainty in past lifetime distributions, J. Appl. Probab. 39 (2002), no. 2, 434–440. 10.1239/jap/1025131441Suche in Google Scholar

[7] A. Di Crescenzo and M. Longobardi, On cumulative entropies, J. Statist. Plann. Inference 139 (2009), no. 12, 4072–4087. 10.1016/j.jspi.2009.05.038Suche in Google Scholar

[8] A. Di Crescenzo and A. Toomaj, Extension of the past lifetime and its connection to the cumulative entropy, J. Appl. Probab. 52 (2015), no. 4, 1156–1174. 10.1239/jap/1450802759Suche in Google Scholar

[9] W. Gilchrist, Statistical Modelling with Quantile Functions, Chapman and Hall/CRC, New York, 2000. 10.1201/9781420035919Suche in Google Scholar

[10] A. V. Lebedev, Exact and conditional bounds for generalized cumulative entropy, Reliab. Theory Appl. 19 (2024), no. 1(77), 440–447. Suche in Google Scholar

[11] F. Misagh, Y. Panahi, G. Yari and R. Shahi, Weighted cumulative entropy and its estimation, 2011 IEEE International Conference on Quality and Reliability, IEEE Press, Piscataway (2011), 477–480. 10.1109/ICQR.2011.6031765Suche in Google Scholar

[12] D. Mukherjee and M. V. Ratnaparkhi, On the functional relationship between entropy and variance with related applications, Comm. Statist. Theory Methods 15 (1986), no. 1, 291–311. 10.1080/03610928608829122Suche in Google Scholar

[13] N. U. Nair and P. G. Sankaran, Quantile-based reliability analysis, Comm. Statist. Theory Methods 38 (2009), no. 1–2, 222–232. 10.1080/03610920802187430Suche in Google Scholar

[14] N. U. Nair and P. G. Sankaran, Quantile-based lower partial moments and their applications, Amer. J. Math. Manag. Sci. 33 (2011), no. 3, 255–276. Suche in Google Scholar

[15] N. U. Nair, P. G. Sankaran and N. Balakrishnan, Quantile-Based Reliability Analysis. With a foreword by J. R. M. Hosking, Statistics for Industry and Technology, Birkhäuser/Springer, New York, 2013. 10.1007/978-0-8176-8361-0_2Suche in Google Scholar

[16] N. U. Nair, P. G. Sankaran and B. V. Kumar, Total time on test transforms of order n and their implications in reliability analysis, J. Appl. Probab. 45 (2008), no. 4, 1126–1139. 10.1239/jap/1231340238Suche in Google Scholar

[17] N. U. Nair, S. M. Sunoj and S. Subhash, Superquantile function of order n and their applications in reliability and entropy, Statist. Probab. Lett. 225 (2025), Paper No. 110457. 10.1016/j.spl.2025.110457Suche in Google Scholar

[18] N. U. Nair and B. Vineshkumar, Cumulative entropy and income analysis, Stoch. Qual. Control 37 (2022), no. 2, 165–179. 10.1515/eqc-2022-0012Suche in Google Scholar

[19] J. Navarro, Introduction to System Reliability Theory, Springer, Cham, 2022. 10.1007/978-3-030-86953-3Suche in Google Scholar

[20] E. Parzen, Nonparametric statistical data modeling, J. Amer. Statist. Assoc. 74 (1979), no. 365, 105–131. 10.2307/2286734Suche in Google Scholar

[21] P. G. Sankaran and S. M. Sunoj, Quantile-based cumulative entropies, Comm. Statist. Theory Methods 46 (2017), no. 2, 805–814. 10.1080/03610926.2015.1006779Suche in Google Scholar

[22] P. K. Sen, The Gini coefficient and poverty indexes: some reconciliations, J. Amer. Statist. Assoc. 81 (1986), no. 396, 1050–1057. 10.1080/01621459.1986.10478372Suche in Google Scholar

[23] M. Shaked and J. G. Shanthikumar, Stochastic Orders, Springer Ser. Statist., Springer, New York, 2007. 10.1007/978-0-387-34675-5Suche in Google Scholar

[24] S. Tahmasebi and H. Parsa, Notes on cumulative entropy as a risk measure, Stoch. Qual. Control 34 (2019), no. 1, 1–7. 10.1515/eqc-2018-0019Suche in Google Scholar

[25] A. Toomaj and A. Di Crescenzo, Generalized entropies, variance and applications, Entropy 22 (2020), no. 6, Paper No. 709. 10.3390/e22060709Suche in Google Scholar PubMed PubMed Central

[26] A. D. Wyner and J. Ziv, On communication of analog data from a bounded source space, Bell System Tech. J. 48 (1969), 3139–3172. 10.1002/j.1538-7305.1969.tb01740.xSuche in Google Scholar

[27] B. Zheng, Poverty orderings, J. Econom. Surveys 14 (2000), no. 4, 427–466. 10.1111/1467-6419.00117Suche in Google Scholar

Received: 2025-02-22
Revised: 2025-10-21
Accepted: 2025-10-21
Published Online: 2025-10-28
Published in Print: 2025-11-01

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 6.2.2026 von https://www.degruyterbrill.com/document/doi/10.1515/eqc-2025-0014/pdf
Button zum nach oben scrollen