Abstract
In this study, the synthetic triple sampling (STS)
References
[1] P. D. Bourke, Detecting a shift in fraction nonconforming using run-length control charts with 100% inspection, J. Qual. Technol. 23 (1991), no. 3, 225–238. 10.1080/00224065.1991.11979328Search in Google Scholar
[2] P. Castagliola, G. Celano, S. Fichera and G. Nenes, The variable sample size t control chart for monitoring short production runs, Int. J. Adv. Manuf. Technol. 66 (2013), no. 9–12, 1353–1366. 10.1007/s00170-012-4413-8Search in Google Scholar
[3] P. Castagliola, G. Celano and S. Psarakis, Monitoring the coefficient of variation using EWMA charts, J. Qual. Technol. 43 (2011), no. 3, 249–265. 10.1080/00224065.2011.11917861Search in Google Scholar
[4] Z. L. Chong, M. B. C. Khoo and P. Castagliola, Synthetic double sampling np control chart for attributes, Comput. Indust. Eng. 75 (2014), 157–169. 10.1016/j.cie.2014.06.016Search in Google Scholar
[5] R. Croasdale, Control charts for a double-sampling scheme based on average production run lengths, Int. J. Prod. Res. 12 (1974), no. 5, 585–592. 10.1080/00207547408919577Search in Google Scholar
[6]
J. J. Daudin,
Double sampling
[7] H. Du Nguyen, K. P. Tran and T. N. Goh, Variable sampling interval control charts for monitoring the ratio of two normal variables, J. Testing Evaluation 48 (2020), no. 3, 2505–2529. 10.1520/JTE20190327Search in Google Scholar
[8] A. Haq and M. B. C. Khoo, A synthetic double sampling control chart for process mean using auxiliary information, Qual. Reliab. Eng. Int. 35 (2019), no. 6, 1803–1825. 10.1002/qre.2477Search in Google Scholar
[9] S. Haridy, N. L. Chong, M. B. C. Khoo, M. Shamsuzzaman and P. Castagliola, Synthetic control chart with curtailment for monitoring shifts in fraction non-conforming, European J. Indust. Eng. 16 (2022), no. 2, 194–214. 10.1504/EJIE.2022.121184Search in Google Scholar
[10]
D. He, A. Grigoryan and M. Sigh,
Design of double- and triple-sampling
[11] M. B. C. Khoo, H. C. Lee, Z. Wu, C. H. Chen and P. Castagliola, A synthetic double sampling control chart for the process mean, IIE Trans. 43 (2010), no. 1, 23–38. 10.1080/0740817X.2010.491503Search in Google Scholar
[12] N. Kovvali, Theory and Applications of Gaussian Quadrature Methods, Springer, Cham, 2022. Search in Google Scholar
[13]
M. R. Maleki, A. Salmasnia and S. Y. Saber,
The performance of triple sampling
[14] E. Mamzeridou and A. C. Rakitzis, Synthetic-type control charts for monitoring general inflated Poisson processes, Comm. Statist. Simulation Comput. 53 (2024), no. 6, 2763–2777. 10.1080/03610918.2022.2088791Search in Google Scholar
[15]
F. N. Mim, M. B. C. Khoo, S. Saha and P. Castagliola,
Revised triple sampling
[16] D. C. Montgomery, Introduction to Statistical Quality Control, 7th ed., Wiley, New York, 2012. Search in Google Scholar
[17] P. C. Oprime, N. J. da Costa, C. I. Mozambani and C. L. Gonçalves, X-bar control chart design with asymmetric control limits and triple sampling, Int. J. Adv. Manuf. Technol. 104 (2019), no. 9, 3313–3326. 10.1007/s00170-018-2640-3Search in Google Scholar
[18]
H. Sabahno, A. Amiri and P. Castagliola,
Optimal performance of the variable sample sizes Hotelling’s T
[19] H. Sabahno, A. Amiri and P. Castagliola, A new adaptive control chart for the simultaneous monitoring of the mean and variability of multivariate normal processes, Comput. Ind. Eng. 151 (2021), Article ID 106524. 10.1016/j.cie.2020.106524Search in Google Scholar
[20]
T. Shan, L. Wu and X. Hu,
A combined upper-sided synthetic S
[21] S. C. Shongwe, J.-C. Malela-Majika and P. Castagliola, The new synthetic and runs-rules schemes to monitor the process mean of autocorrelated observations with measurement errors, Comm. Statist. Theory Methods 50 (2021), no. 24, 5806–5835. 10.1080/03610926.2020.1737125Search in Google Scholar
[22]
Q. Wan, M. Zhu and Y. Liu,
Monitoring the process mean using a synthetic
[23] Z. Wu and T. A. Spedding, A synthetic control chart for detecting small shifts in the process mean, J. Qual. Technol. 32 (2000), no. 1, 32–38. 10.1080/00224065.2000.11979969Search in Google Scholar
[24] O. G. Xao, A. Abdul-Rahman and S. Abdullah, The in-control performance of the robust multivariate synthetic control charts for monitoring mean shift, J. Tech. Sci. Eng. 87 (2025), no. 1, 1–7. 10.11113/jurnalteknologi.v87.21511Search in Google Scholar
[25] W. C. Yeong, P. Y. Lee, S. L. Lim, K. W. Khaw and M. B. C. Khoo, A side-sensitive synthetic coefficient of variation chart, Qual. Reliab. Eng. Int. 37 (2021), no. 5, 2014–2033. 10.1002/qre.2843Search in Google Scholar
© 2025 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Classical and Bayesian Estimation of PCI 𝒞pc Using Power Generalized Weibull Distribution
- A τ-Power Stochastic Rayleigh Diffusion Model: Computational Aspects, Simulation and Predictive Analysis
- Acceptance Sampling Plans for Truncated Life Tests Using the Marshall–Olkin Birnbaum–Saunders Distribution
- The EWMA Wilcoxon Signed-Rank Chart with Variable Sampling Interval
- A New Synthetic Triple Sampling X̅ Control Chart
- From Quantile Functions to Subquantile Functions and Their Applications
Articles in the same Issue
- Frontmatter
- Classical and Bayesian Estimation of PCI 𝒞pc Using Power Generalized Weibull Distribution
- A τ-Power Stochastic Rayleigh Diffusion Model: Computational Aspects, Simulation and Predictive Analysis
- Acceptance Sampling Plans for Truncated Life Tests Using the Marshall–Olkin Birnbaum–Saunders Distribution
- The EWMA Wilcoxon Signed-Rank Chart with Variable Sampling Interval
- A New Synthetic Triple Sampling X̅ Control Chart
- From Quantile Functions to Subquantile Functions and Their Applications