Home Business & Economics A τ-Power Stochastic Rayleigh Diffusion Model: Computational Aspects, Simulation and Predictive Analysis
Article
Licensed
Unlicensed Requires Authentication

A τ-Power Stochastic Rayleigh Diffusion Model: Computational Aspects, Simulation and Predictive Analysis

  • Yassine Chakroune EMAIL logo , Abdenbi El Azri ORCID logo and Ahmed Nafidi
Published/Copyright: March 28, 2025
Become an author with De Gruyter Brill

Abstract

The overall idea of this paper is to introduce a new family of inhomogeneous stochastic Rayleigh diffusion processes and use them to predict and forecast simulated data after establishing the main characteristics of these kinds of processes. They are interesting models for infectious diseases, health and renewable energies. First of all, we define the new processes by means of a τ-power of the stochastic Rayleigh diffusion model. Then the most important features of the process are examined, with particular attention to its analytic expression, transition probability density function and mean functions. Otherwise, the parameters that appear in the present model are estimated by maximum likelihood with discrete sampling. Lastly, in order to assess the quality of this process, we will use these statistical computations for simulated examples, specifying fitting and prediction possibilities.

References

[1] Y. Aït-Sahalia, Maximum likelihood estimation of discretely sampled diffusions: A closed-form approximation approach, Econometrica 70 (2002), no. 1, 223–262. 10.1111/1468-0262.00274Search in Google Scholar

[2] B. M. Al-Eideh, A. S. A. Al-Refai and W. M. Sbeiti, Modelling the CPI using a lognormal diffusion process and implications on forecasting inflation, IMA J. Manag. Math. 15 (2004), no. 1, 39–51. 10.1093/imaman/15.1.39Search in Google Scholar

[3] L. Arnold, Stochastic Differential Equations: Theory and Applications, Wiley-Interscience, New Yorky, 1973. Search in Google Scholar

[4] F. Baltazar-Larios, F. Delgado-Vences and S. Diaz-Infante, Maximum likelihood estimation for a stochastic SEIR system with a COVID-19 application, Int. J. Comput. Math. 101 (2024), no. 12, 1356–1378. 10.1080/00207160.2022.2148316Search in Google Scholar

[5] F. Calitz, Maximum likelihood estimation of the parameters of the three-parameter lognormal distribution—a reconsideration, Austral. J. Statist. 15 (1973), 185–190. 10.1111/j.1467-842X.1973.tb00199.xSearch in Google Scholar

[6] A. Di Crescenzo, P. Paraggio, P. Román-Román and F. Torres-Ruiz, Statistical analysis and first-passage-time applications of a lognormal diffusion process with multi-sigmoidal logistic mean, Statist. Papers 64 (2023), no. 5, 1391–1438. 10.1007/s00362-022-01349-1Search in Google Scholar

[7] A. V. Egorov, H. Li and Y. Xu, Maximum likelihood estimation of time-inhomogeneous diffusions, J. Econometrics 114 (2003), no. 1, 107–139. 10.1016/S0304-4076(02)00221-XSearch in Google Scholar

[8] A. El Azri and A. Nafidi, A stochastic log-logistic diffusion process: Statistical computational aspects and application to real data, Stoch. Models 40 (2024), no. 2, 261–277. 10.1080/15326349.2023.2241070Search in Google Scholar

[9] R. Gutiérrez, R. Gutiérrez-Sánchez and A. Nafidi, The stochastic Rayleigh diffusion model: Statistical inference and computational aspects. Applications to modelling of real cases, Appl. Math. Comput. 175 (2006), no. 1, 628–644. 10.1016/j.amc.2005.07.047Search in Google Scholar

[10] R. Gutiérrez, A. Nafidi and R. Gutiérrez-Sánchez, Forecasting total natural-gas consumption in Spain by using the stochastic Gompertz innovation diffusion model, Appl. Energy 80 (2005), 115–124. 10.1016/j.apenergy.2004.03.012Search in Google Scholar

[11] R. Gutiérrez, P. Román and F. Torres, Inference and first-passage-time for the lognormal diffusion process with exogenous factors: Application to modelling in economics, Appl. Stoch. Models Bus. Ind. 15 (1999), no. 4, 325–332. 10.1002/(SICI)1526-4025(199910/12)15:4<325::AID-ASMB397>3.0.CO;2-FSearch in Google Scholar

[12] A. Katsamaki and C. Skiadas, Analytic solution and estimation of parameters on a stochastic exponential model for technology diffusion process, Appl. Stoch. Models Data Anal. 11 (1995), 59–75. 10.1002/asm.3150110108Search in Google Scholar

[13] P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, Appl. Math. (New York) 23, Springer, Berlin, 1992. 10.1007/978-3-662-12616-5Search in Google Scholar

[14] J. A. Lambert, Estimation of parameters in the three-parameter log-normal distribution, Austral. J. Statist. 6 (1964), 29–32. 10.1111/j.1467-842X.1964.tb00248.xSearch in Google Scholar

[15] C. D. Lewis, Industrial and Business Forecasting Methods: A Practical Guide to Exponential Smoothing and Curve Fitting, Butterworth Scientific, London, 1999. Search in Google Scholar

[16] A. Nafidi, Y. Chakroune, R. Gutiérrez-Sánchez and A. Tridane, Forecasting the active cases of COVID-19 via a new stochastic Rayleigh diffusion process, Fract. Fractional 7 (2023), no. 9, Paper No. 660. 10.3390/fractalfract7090660Search in Google Scholar

[17] A. Nafidi and A. El Azri, A stochastic diffusion process based on the Lundqvist–Korf growth: Computational aspects and simulation, Math. Comput. Simulation 182 (2021), 25–38. 10.1016/j.matcom.2020.10.022Search in Google Scholar

[18] A. Nafidi, A. El Azri and R. Gutiérrez-Sànchez, The stochastic modified Lundqvist-Korf diffusion process: Statistical and computational aspects and application to modeling of the CO 2 emission in Morocco, Stoch. Environ. Res. Risk Assessment 36 (2022), no. 4, 1163–1176. 10.1007/s00477-021-02089-8Search in Google Scholar

[19] A. Nafidi, A. El Azri and R. Gutiérrez-Sánchez, A stochastic Schumacher diffusion process: Probability characteristics computation and statistical analysis, Methodol. Comput. Appl. Probab. 25 (2023), no. 2, Paper No. 66. 10.1007/s11009-023-10031-4Search in Google Scholar

[20] A. Nafidi, R. Gutiérrez, R. Gutiérrez-Sánchez, E. Ramos-Abalos and S. El Hachimi, Modelling and predicting electricity consumption in Spain using the stochastic Gamma diffusion process with exogenous factors, Energy 113 (2016), 309–318. 10.1016/j.energy.2016.07.002Search in Google Scholar

[21] B. L. S. Prakasa Rao, Statistical Inference for Diffusion Type Processes, Kendall’s Libr. Statist. 8, Edward Arnold, London, 1999. Search in Google Scholar

[22] E. M. Ramos-Ábalos, R. Gutiérrez-Sánchez and A. Nafidi, Powers of the stochastic Gompertz and lognormal diffusion processes, statistical inference and simulation, Mathematics 8 (2020), no. 4, Paper No. 588. 10.3390/math8040588Search in Google Scholar

[23] L. M. Ricciardi, On the transformation of diffusion processes into the Wiener process, J. Math. Anal. Appl. 54 (1976), no. 1, 185–199. 10.1016/0022-247X(76)90244-4Search in Google Scholar

[24] P. Román-Román, D. Romero and F. Torres-Ruiz, A diffusion process to model generalized von Bertalanffy growth patterns: Fitting to real data, J. Theoret. Biol. 263 (2010), no. 1, 59–69. 10.1016/j.jtbi.2009.12.009Search in Google Scholar PubMed

[25] P. Román-Román and F. Torres-Ruiz, Modelling logistic growth by a new diffusion process: Application to biological systems, BioSystems 110 (2012), 9–21. 10.1016/j.biosystems.2012.06.004Search in Google Scholar PubMed

[26] P. W. Zehna, Invariance of maximum likelihood estimators, Ann. Math. Statist. 37 (1966), 744. 10.1214/aoms/1177699475Search in Google Scholar

Received: 2024-12-10
Revised: 2025-02-21
Accepted: 2025-02-22
Published Online: 2025-03-28
Published in Print: 2025-11-01

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 6.2.2026 from https://www.degruyterbrill.com/document/doi/10.1515/eqc-2024-0052/html
Scroll to top button