Home Mathematics Chandrasekhar quadratic and cubic integral equations via Volterra-Stieltjes quadratic integral equation
Article Open Access

Chandrasekhar quadratic and cubic integral equations via Volterra-Stieltjes quadratic integral equation

  • Ahmed M. A. El-Sayed and Yasmin M. Y. Omar EMAIL logo
Published/Copyright: May 18, 2021
Become an author with De Gruyter Brill

Abstract

In this work, we study the existence of one and exactly one solution x C [ 0 , 1 ] , for a delay quadratic integral equation of Volterra-Stieltjes type. As special cases we study a delay quadratic integral equation of fractional order and a Chandrasekhar cubic integral equation.

MSC 2010: 74H10; 45G10; 47H30

1 Introduction

Quadratic integral equations arise in many applications in the real world. For example, problems in the theory of radioactive transfer, in the theory of neutron transport and the kinetic theory of gasses lead to quadratic integral equations (see [1,2,3, 4,5]).

The existence of solutions of the integral equations of Volterra-Stiltjes type has been studied by J. Banaś in [6,7, 8,9,10, 11,12].

Consider the delay quadratic integral equation of Volterra-Stieltjes type

(1) x ( t ) = a ( t ) + 0 φ ( t ) f 1 ( t , s , x ( s ) ) d s g 1 ( t , s ) 0 1 f 2 ( t , s , x ( s ) ) d s g 2 ( t , s ) , t I = [ 0 , 1 ] .

Here we study the existence of solutions of the quadratic integral equation (1) in the class of continuous functions. The continuous dependence of the unique solution of the quadratic integral equation (1) on the functions g 1 , g 2 and φ will be studied. As an application, we use the concept and properties of the fractional-order integral (see, for example, [13,14] and [15,16,17, 18,19,20, 21,22]) to obtain the solutions of the fractional-order quadratic integral equation

x ( t ) = a ( t ) + I α f 1 ( t , s , x ) 0 1 t t + s f 2 ( t , s , x ( s ) ) d s ,

the Chandrasekhar quadratic integral equation

x ( t ) = a ( t ) + x ( t ) 0 1 t t + s a ( s ) x ( s ) d s

and the Chandrasekhar cubic integral equation

x ( t ) = a ( t ) + x 2 ( t ) 0 1 t t + s a ( s ) x ( s ) d s

will be considered.

2 Existence of at least one solution

Now we consider the delay quadratic integral equation of Volterra-Stieltjes type (1) under the following assumptions:

  1. φ : [ 0 , 1 ] [ 0 , 1 ] is continuous and increasing such that φ ( t ) t .

  2. a C [ 0 , 1 ] .

  3. f i : [ 0 , 1 ] × [ 0 , 1 ] × R R are continuous such that

    f 1 ( t , s , x ) b 1 ( t , s ) + k 1 ( t , s ) x p , p 1

    and

    f 2 ( t , s , x ) b 2 ( t , s ) + k 2 ( t , s ) x ,

    where b i , k i : [ 0 , 1 ] × [ 0 , 1 ] R + are continuous and

    b = sup t { b i ( t , s ) : t , s [ 0 , 1 ] , i = 1 , 2 } ,

    k = sup t { k i ( t , s ) : t , s [ 0 , 1 ] , i = 1 , 2 } .

  4. (1) The function g 1 is continuous on Λ , where

    Λ = ( t , s ) : 0 s t 1 .

  5. (2) The function g 2 : [ 0 , 1 ] × R R is continuous with

    μ = max { sup { g 2 ( t , 1 ) : t [ 0 , 1 ] } , sup { g 2 ( t , 0 ) : t [ 0 , 1 ] } } .

  6. (1) For each ε > 0 there exists δ > 0 for all t 1 , t 2 I such that t 1 < t 2 and t 2 t 1 < δ the following inequality holds:

    0 t 1 [ g 1 ( t 2 , s ) g 1 ( t 1 , s ) ] ε .

  7. (2) For all t 1 , t 2 I such that t 1 < t 2 the function s g 2 ( t 2 , s ) g 2 ( t 1 , s ) is nondecreasing on [ 0 , 1 ] .

  8. (1) g 1 ( t , 0 ) = 0 for any t [ 0 , 1 ] .

  9. (2) g 2 ( 0 , s ) = 0 for any s [ 0 , 1 ] .

  10. The function s g 1 ( t , s ) is of bounded variation on [0, t] for each fixed t I .

  11. There exists a positive root r of the algebraic equation

    (2) k 2 K μ r p + 1 + b k K μ r p + ( b k μ K 1 ) r + ( a + b 2 K μ ) = 0 .

    If p = 1 , then the algebraic equation (2) has the form

    k 2 K μ r 2 + ( 2 b k K μ 1 ) r + ( a + b 2 K μ ) = 0 .

    If p = 2 , the algebraic equation (2) will be of the form

    k 2 K μ r 3 + b k K μ r 2 + ( b k μ K 1 ) r + ( a + b 2 K μ ) = 0 .

Remark 1

The function z z = 0 s g 1 ( t , s ) is continuous on [ 0 , t ] for any fixed t I [7].

Lemma 1

For an arbitrary fixed 0 < t 2 < I and for any ε > 0 , there exists δ > 0 such that if t 1 I , t 1 < t 2 and t 2 t 1 < δ then [7]

s = t 1 t 2 g 1 ( t 2 , s ) δ .

Lemma 2

The function t s = 0 t g 1 ( t , s ) is continuous on I . Then there exists a finite positive constant K such that

K = sup s = 0 t g 1 ( t , s ) : t I .

Remark 2

(see [7]) Observe that the function s g 2 ( t , s ) is nondecreasing on the interval [ 0 , 1 ] . In fact, for s 1 , s 2 [ 0 , 1 ] , with s 1 < s 2 , from assumptions (v) and (vi), we obtain

g 2 ( t , s 2 ) g 2 ( t , s 1 ) = [ g 2 ( t , s 2 ) g 2 ( 0 , s 2 ) ] [ g 2 ( t , s 1 ) g 2 ( 0 , s 1 ) ] 0 .

Lemma 3

(see [7]) Assume that the function g 2 satisfies assumption (vi). Then for arbitrary s 1 , s 2 I , such that s 1 < s 2 , the function t g 2 ( t , s 2 ) g 2 ( t , s 1 ) is nondecreasing on the interval I .

In fact, take t 1 , t 2 [ 0 , 1 ] such that t 1 < t 2 . Then, by assumption (vi), we get

[ g 2 ( t 2 , s 2 ) g 2 ( t 2 , s 1 ) ] [ g 2 ( t 1 , s 2 ) g 2 ( t 1 , s 1 ) ] = [ g 2 ( t 2 , s 2 ) g 2 ( t 1 , s 2 ) ] [ g 2 ( t 2 , s 1 ) g 2 ( t 1 , s 1 ) ] 0 .

For the existence of at least one solution of the quadratic integral equation (1), we have the following theorem.

Theorem 1

Let assumptions (i)–(viii) be satisfied, then the functional integral equation (1) has at least one continuous solution x C [ 0 , 1 ] .

Proof

Define the operator

F x ( t ) = a ( t ) + 0 φ ( t ) f 1 ( t , s , x ( s ) ) d s g 1 ( t , s ) 0 1 f 2 ( t , s , x ( s ) ) d s g 2 ( t , s ) .

Define the set Q by Q = { x C [ 0 , 1 ] : x r } , where r is a positive solution of the algebraic equation ( a + ( b + k r ) 2 μ K = r ) .

It is clear that the set Q is a nonempty, bounded, closed and convex set.

Now, let x C [ 0 , 1 ] , then

F x ( t ) = a ( t ) + 0 φ ( t ) f 1 ( t , s , x ( s ) ) d s g 1 ( t , s ) 0 1 f 2 ( t , s , x ( s ) ) d s g 2 ( t , s ) a + 0 φ ( t ) f 1 ( t , s , x ( s ) ) d s g 1 ( t , s ) 0 1 f 2 ( t , s , x ( s ) ) d s g 2 ( t , s ) a + 0 φ ( t ) ( b 1 ( t , s ) + k 1 ( t , s ) x p ) d s z = 0 s g 1 ( t , z ) 0 1 ( b 2 ( t , s ) + k 2 ( t , s ) x ) d s z = 0 s g 2 ( t , z ) a + ( b + k x p ) 0 φ ( t ) d s g 1 ( t , s ) ( b + k x ) 0 1 d s g 2 ( t , s ) a + ( b + k r p ) sup t I s = 0 s g 1 ( t , s ) ( b + k r ) ( g 2 ( t , 1 ) g 2 ( t , 0 ) ) a + ( b + k r p ) ( b + k r ) K μ = r .

Hence, F x Q which proves that the operator F maps Q into itself and the class of functions { F x } is uniformly bounded in Q .

Let x Q and define

θ ( δ ) = sup x Q r { f i ( t 2 , s , x ( s ) ) f i ( t 1 , s , x ( s ) ) : t 1 , t 2 [ 0 , 1 ] , t 1 < t 2 , t 2 t 1 < δ , s I , i = 1 , 2 } ,

then from the uniform continuity of the function f i : [ 0 , 1 ] × [ 0 , 1 ] × Q R and assumption (iii), we deduce that θ ( δ ) 0 , as δ 0 independently on x Q .

Now, to prove the operator F maps C [ 0 , 1 ] into itself, let t 1 , t 2 [ 0 , 1 ] , such that t 2 t 1 < δ , then we have

F x ( t 2 ) F x ( t 1 ) = a ( t 2 ) + 0 φ ( t 2 ) f 1 ( t 2 , s , x ( s ) ) d s g 1 ( t 2 , s ) 0 1 f 2 ( t 2 , s , x ( s ) ) d s g 2 ( t 2 , s ) a ( t 1 ) 0 φ ( t 1 ) f 1 ( t 1 , s , x ( s ) ) d s g 1 ( t 1 , s ) 0 1 f 2 ( t 1 , s , x ( s ) ) d s g 2 ( t 1 , s ) a ( t 2 ) a ( t 1 ) + 0 φ ( t 2 ) f 1 ( t 2 , s , x ( s ) ) d s g 1 ( t 2 , s ) 0 1 f 2 ( t 2 , s , x ( s ) ) d s g 2 ( t 2 , s ) 0 φ ( t 1 ) f 1 ( t 1 , s , x ( s ) ) d s g 1 ( t 1 , s ) 0 1 f 2 ( t 2 , s , x ( s ) ) d s g 2 ( t 2 , s ) + 0 φ ( t 1 ) f 1 ( t 1 , s , x ( s ) ) d s g 1 ( t 1 , s ) 0 1 f 2 ( t 2 , s , x ( s ) ) d s g 2 ( t 2 , s ) 0 φ ( t 1 ) f 1 ( t 1 , s , x ( s ) ) d s g 1 ( t 1 , s ) 0 1 f 2 ( t 1 , s , x ( s ) ) d s g 2 ( t 1 , s ) = a ( t 2 ) a ( t 1 ) + 0 1 f 2 ( t 2 , s , x ( s ) ) d s g 2 ( t 2 , s ) 0 φ ( t 2 ) f 1 ( t 2 , s , x ( s ) ) d s g 1 ( t 2 , s ) 0 φ ( t 1 ) f 1 ( t 1 , s , x ( s ) ) d s g 1 ( t 1 , s ) + 0 φ ( t 1 ) f 1 ( t 1 , s , x ( s ) ) d s g 1 ( t 1 , s ) 0 1 f 2 ( t 2 , s , x ( s ) ) d s g 2 ( t 2 , s ) 0 1 f 2 ( t 1 , s , x ( s ) ) d s g 2 ( t 1 , s ) a ( t 2 ) a ( t 1 ) + 0 1 f 2 ( t 2 , s , x ( s ) ) d s g 2 ( t 2 , s ) 0 φ ( t 1 ) f 1 ( t 2 , s , x ( s ) ) d s g 1 ( t 2 , s ) + φ ( t 1 ) φ 1 ( t 2 ) f 1 ( t 2 , s , x ( s ) ) d s g 1 ( t 2 , s ) 0 φ ( t 1 ) f 1 ( t 1 , s , x ( s ) ) d s g 1 ( t 1 , s ) + 0 1 f 2 ( t 1 , s , x ( s ) ) d s g 2 ( t 1 , s ) 0 1 f 2 ( t 2 , s , x ( s ) ) d s g 2 ( t 2 , s ) 0 1 f 2 ( t 2 , s , x ( s ) ) d s g 2 ( t 1 , s ) + 0 1 f 2 ( t 2 , s , x ( s ) ) d s g 2 ( t 1 , s ) 0 1 f 2 ( t 1 , s , x ( s ) ) d s g 2 ( t 1 , s ) a ( t 2 ) a ( t 1 ) + 0 1 f 2 ( t 2 , s , x ( s ) ) d s g 2 ( t 2 , s ) 0 φ ( t 1 ) f 1 ( t 2 , s , x ( s ) ) d s g 1 ( t 2 , s ) + φ ( t 1 ) φ ( t 2 ) f 1 ( t 2 , s , x ( s ) ) d s g 1 ( t 2 , s ) 0 φ ( t 1 ) f 1 ( t 1 , s , x ( s ) ) d s g 1 ( t 1 , s ) + 0 φ ( t 1 ) f 1 ( t 2 , s , x ( s ) ) d s g 1 ( t 1 , s ) 0 φ ( t 1 ) f 1 ( t 2 , s , x ( s ) ) d s g 1 ( t 1 , s ) + 0 1 f 2 ( t 1 , s , x ( s ) ) d s g 2 ( t 1 , s ) 0 1 f 2 ( t 2 , s , x ( s ) ) d s [ g 2 ( t 2 , s ) g 2 ( t 1 , s ) ] + 0 1 [ f 2 ( t 2 , s , x ( s ) ) f 2 ( t 1 , s , x ( s ) ) ] d s g 2 ( t 1 , s ) a ( t 2 ) a ( t 1 ) + 0 1 f 2 ( t 2 , s , x ( s ) ) d s g 2 ( t 2 , s ) φ ( t 1 ) φ ( t 2 ) f 1 ( t 2 , s , x ( s ) ) d s g 1 ( t 2 , s ) + 0 φ ( t 1 ) f 1 ( t 2 , s , x ( s ) ) d s [ g 1 ( t 2 , s ) g 1 ( t 1 , s ) ] + 0 φ ( t 1 ) f 1 ( t 2 , s , x ( s ) ) f 1 ( t 2 , s , x ( s ) ) d s g 1 ( t 1 , s ) + 0 1 f 2 ( t 1 , s , x ( s ) ) d s g 2 ( t 1 , s ) 0 1 f 2 ( t 2 , s , x ( s ) ) d s [ g 2 ( t 2 , s ) g 2 ( t 1 , s ) ] + 0 1 [ f 2 ( t 2 , s , x ( s ) ) f 2 ( t 1 , s , x ( s ) ) ] d s g 2 ( t 1 , s ) a ( t 2 ) a ( t 1 ) + ( b + k r ) [ g 2 ( t 2 , 1 ) g 2 ( t 2 , 0 ) ] ( b + k r p ) φ ( t 1 ) φ ( t 2 ) g 1 ( t 2 , s ) + ( b + k r p ) N ( ε ) + θ ( ε ) sup t I s = 0 φ ( t 1 ) g 1 ( t , s ) + ( b + k r ) [ g 2 ( t 1 , 1 ) g 2 ( t 1 , 0 ) ] ( b + k r ) z = 0 s [ g 2 ( t 2 , z ) g 2 ( t 1 , z ) ] + θ ( ε ) ( g 2 ( t 2 , 1 ) g 2 ( t 2 , 0 ) ) ,

where

N ( ε ) = sup s = 0 t 1 ( g 1 ( t 2 , s ) g 1 ( t 1 , s ) ) : t 1 , t 2 I , t 1 < t 2 , t 2 t 1 ε .

The above inequality means that F x : C [ 0 , 1 ] C [ 0 , 1 ] .

Then F Q is compact.

Now we prove that the operator F is continuous.

Let { x n } Q , and { x n } x , in Q R then

F x n ( t ) = a ( t ) + 0 φ ( t ) f 1 ( t , s , x n ( s ) ) d s g 1 ( t , s ) 0 1 f 2 ( t , s , x n ( s ) ) d s g 2 ( t , s ) , lim n F x n ( t ) = a ( t ) + lim n 0 φ ( t ) f 1 ( t , s , x n ( s ) ) d s g 1 ( t , s ) 0 1 f 2 ( t , s , x n ( s ) ) d s g 2 ( t , s ) .

Applying Lebesgue dominated convergence theorem (see [23]), then

= a ( t ) + 0 φ ( t ) f 1 ( t , s , lim n x n ( s ) ) d s g 1 ( t , s ) 0 1 f 2 ( t , s , lim n x n ( s ) ) d s g 2 ( t , s ) = a ( t ) + 0 φ ( t ) f 1 ( t , s , x 0 ( s ) ) d s g 1 ( t , s ) 0 1 f 2 ( t , s , x 0 ( s ) ) d s g 2 ( t , s ) = F x 0 ( t )

which means that the operator F is continuous.

Since all conditions of Schauder fixed point theorem [23] (see also [2,3, 6,13]) are satisfied, the operator F has at least one fixed point x Q , and the integral equation (1) has at least one solution x C [ 0 , 1 ] . This completes the proof.□

3 Uniqueness of the solution

To study the uniqueness of the solution of the functional integral equation (1), we replace the assumption (iii) by:

  1. f i : [ 0 , 1 ] × [ 0 , 1 ] × R R , i = 1 , 2 are continuous and satisfy the Lipschitz condition

    f 1 ( t , s , x ) f 1 ( t , s , y ) k 1 x y p 2 r p 1 k 1 x y , x , y Q ,

    f 2 ( t , s , x ) f 2 ( t , s , y ) k 2 x y , x , y Q

    and k = max { 2 r p 1 k 1 , k 2 } .

From assumption ( i i i ) we have consecutively

f 1 ( t , s , x ( s ) ) f 1 ( t , s , 0 ) f 1 ( t , s , x ( s ) ) f 1 ( t , s , 0 ) k x p ,

f 1 ( t , s , x ( s ) ) k x p + f 1 ( t , s , 0 ) .

Hence,

f 1 ( t , s , x ( s ) ) k x p + b , b = sup t { f i ( t , s , 0 ) : t , s [ 0 , 1 ] , i = 1 , 2 } .

Similarly,

f 2 ( t , s , x ( s ) ) k x + b .

For the uniqueness of the solution of the functional integral equation (1) we have the following theorem.

Theorem 2

Let assumptions (i)-(ii)- ( i i i ) -(iv)-(v)-(vi)-(vii)-(viii) be satisfied, if k K [ ( b + k r ) + ( b + k r p ) ] μ < 1 , then the solution x C [ 0 , 1 ] of the functional integral equation (1) is unique.

Proof

Let x 1 , x 2 be two solutions of the integral equation (1), then

F x 1 F x 2 = F x 1 ( t ) F x 2 ( t ) = a ( t ) + 0 φ ( t ) f 1 ( s , x 1 ( s ) ) d s g 1 ( t , s ) 0 1 f 2 ( t , s , x 1 ( s ) ) d s g 2 ( t , s ) a ( t ) 0 φ ( t ) f 1 ( t , s , x 2 ( s ) ) d s g 1 ( t , s ) 0 1 f 2 ( t , s , x 2 ( s ) ) d s g 2 ( t , s ) = 0 φ ( t ) f 1 ( t , s , x 1 ( s ) ) d s g 1 ( t , s ) 0 1 f 2 ( t , s , x 1 ( s ) ) d s g 2 ( t , s ) 0 φ ( t ) f 1 ( t , s , x 2 ( s ) ) d s g 1 ( t , s ) 0 1 f 2 ( t , s , x 2 ( s ) ) d s g 2 ( t , s ) = 0 φ ( t ) f 1 ( t , s , x 1 ( s ) ) d s g 1 ( t , s ) 0 1 f 2 ( t , s , x 1 ( s ) ) d s g 2 ( t , s ) 0 φ ( t ) f 1 ( t , s , x 2 ( s ) ) d s g 1 ( t , s ) 0 1 f 2 ( t , s , x 2 ( s ) ) d s g 2 ( t , s ) + 0 φ ( t ) f 1 ( t , s , x 1 ( s ) ) d s g 1 ( t , s ) 0 1 f 2 ( t , s , x 2 ( s ) ) d s g 2 ( t , s ) 0 φ ( t ) f 1 ( t , s , x 1 ( s ) ) d s g 1 ( t , s ) 0 1 f 2 ( t , s , x 2 ( s ) ) d s g 2 ( t , s ) 0 φ ( t ) f 1 ( t , s , x 1 ( s ) ) d s g 1 ( t , s ) 0 1 ( f 2 ( t , s , x 1 ( s ) ) f 2 ( t , s , x 2 ( s ) ) ) d s g 2 ( t , s ) + 0 φ ( t ) f 2 ( t , s , x 2 ( s ) ) d s g 2 ( t , s ) 0 φ ( t ) ( f 1 ( t , s , x 1 ( s ) ) f 1 ( t , s , x 2 ( s ) ) ) d s g 2 ( t , s ) ( b + k r p ) K μ k x 1 x 2 + ( b + k r ) K μ k x 1 x 2 ,

F x 1 F x 2 k K μ [ ( b + k r ) + ( b + k r p ) ] x 1 x 2 .

This proves that the map F : C [ 0 , 1 ] C [ 0 , 1 ] is a contraction. Then by Banach fixed point theorem the solution of the functional integral equation (1) is unique.□

4 Continuous dependence of the solution

In this section, we are going to study the continuous dependence of the unique solution x C [ 0 , 1 ] of the functional integral equation (1) on the delay function and the functions g 1 , g 2 .

4.1 Continuous dependence on the delay functions φ ( t )

Definition 1

The solution of the functional integral equation (1), depends continuously on the delay function φ ( t ) if ε > 0 , δ > 0 , such that

φ ( t ) φ ( t ) δ x x ε .

Theorem 3

Let the assumptions of Theorem 2 be satisfied, then the solution of the functional integral equation (1) depends continuously on the delay function φ ( t ) .

Proof

Let δ > 0 be given such that φ ( t ) φ ( t ) δ , t 0 , then

x ( t ) x ( t ) a ( t ) + 0 φ ( t ) f 1 ( t , s , x ( s ) ) d s g 1 ( t , s ) 0 1 f 2 ( t , s , x ( s ) ) d s g 2 ( t , s ) a ( t ) 0 φ ( t ) f 1 ( t , s , x ( s ) ) d s g 1 ( t , s ) 0 1 f 2 ( t , s , x ( s ) ) d s g 2 ( t , s ) 0 φ ( t ) f 1 ( t , s , x ( s ) ) d s g 1 ( t , s ) 0 1 f 2 ( t , s , x ( s ) ) d s g 2 ( t , s ) 0 φ ( t ) f 1 ( t , s , x ( s ) ) d s g 1 ( t , s ) 0 1 f 2 ( t , s , x ( s ) ) d s g 2 ( t , s ) + 0 φ ( t ) f 1 ( t , s , x ( s ) ) d s g 1 ( t , s ) 0 1 f 2 ( t , s , x ( s ) ) d s g 2 ( t , s ) 0 φ ( t ) f 1 ( t , s , x ( s ) ) d s g 1 ( t , s ) 0 1 f 2 ( t , s , x ( s ) ) d s g 2 ( t , s ) 0 1 f 2 ( t , s , x ( s ) ) d s g 2 ( t , s ) 0 φ ( t ) f 1 ( t , s , x ( s ) ) d s g 1 ( t , s ) 0 φ ( t ) f 1 ( t , s , x ( s ) ) d s g 1 ( t , s ) + 0 φ ( t ) f 1 ( t , s , x ( s ) ) d s g 1 ( t , s ) 0 1 f 2 ( t , s , x ( s ) ) d s g 2 ( t , s ) 0 1 f 2 ( t , s , x ( s ) ) d s g 2 ( t , s ) 0 1 f 2 ( t , s , x ( s ) ) d s g 2 ( t , s ) 0 φ ( t ) f 1 ( t , s , x ( s ) ) d s g 1 ( t , s ) 0 φ ( t ) f 1 ( t , s , x ( s ) ) d s g 1 ( t , s ) + 0 φ ( t ) f 1 ( t , s , x ( s ) ) d s g 1 ( t , s ) 0 φ ( t ) f 1 ( t , s , x ( s ) ) d s g 1 ( t , s ) + 0 φ ( t ) f 1 ( t , s , x ( s ) ) d s g 1 ( t , s ) 0 1 f 2 ( t , s , x ( s ) ) d s g 2 ( t , s ) 0 1 f 2 ( t , s , x ( s ) ) d s g 2 ( t , s ) 0 1 f 2 ( t , s , x ( s ) ) d s g 2 ( t , s ) 0 φ ( t ) k x ( s ) x ( s ) d s g 1 ( t , s ) + φ ( t ) φ ( t ) f 1 ( t , s , x ( s ) ) d s g 1 ( t , s ) + 0 φ ( t ) f 1 ( t , s , x ( s ) ) d s g 1 ( t , s ) 0 1 k x ( s ) x ( s ) d s g 2 ( t , s ) ( b + k r ) [ g 2 ( t , 1 ) g 2 ( t , 0 ) ] k x x sup t I s = 0 φ ( t ) g 1 ( t , s ) s = 0 φ ( t ) + ( b + k r p ) [ g 1 ( t , φ ( t ) ) g 1 ( t , φ ( t ) ) ] + ( b + k r p ) sup t I s = 0 φ ( t ) g 1 ( t , s ) { k x x ( g 2 ( t , 1 ) g 2 ( t , 0 ) ) } ( b + k r ) μ { k x x K + ( b + k r p ) [ g 1 ( t , φ ( t ) ) g 1 ( t , φ ( t ) ) ] } + ( b + k r p ) K k x x μ

x x ( b + k r ) μ ( b + k r p ) [ g 1 ( t , φ ( t ) ) g 1 ( t , φ ( t ) ) ] 1 k K μ [ ( b + k r ) + ( b + k r p ) ] .

Using the continuity of g 1 we have

φ ( t ) φ ( t ) δ g 1 ( t , φ ( t ) ) g 1 ( t , φ ( t ) ) < ε 1 ,

then

( b + k r ) ( b + k r p ) μ ε 1 1 k K μ [ ( b + k r ) + ( b + k r p ) ] = ε .

This completes the proof.□

4.2 Continuous dependence on the functions g i

Definition 2

The solution of the quadratic functional integral equation (1), depends continuously on the functions g i ( t , s ) , i = 1 , 2 if ε > 0 , δ > 0 , such that

g i ( t , s ) g i ( t , s ) δ x x ε .

Theorem 4

Let the assumptions of Theorem 2 be satisfied, then the solution of the delay quadratic functional integral equation (1) depends continuously on the functions g 1 , g 2 .

Proof

Let δ > 0 be given such that g i ( t , s ) g i ( t , s ) δ , t 0 , then

x ( t ) x ( t ) = a ( t ) + 0 φ ( t ) f 1 ( t , s , x ( s ) ) d s g 1 ( t , s ) 0 1 f 2 ( t , s , x ( s ) ) d s g 2 ( t , s ) a ( t ) + 0 φ ( t ) f 1 ( t , s , x ( s ) ) d s g 1 ( t , s ) 0 1 f 2 ( t , s , x ( s ) ) d s g 2 ( t , s ) 0 φ ( t ) f 1 ( t , s , x ( s ) ) d s g 1 ( t , s ) 0 1 f 2 ( t , s , x ( s ) ) d s g 2 ( t , s ) 0 φ ( t ) f 1 ( t , s , x ( s ) ) d s g 1 ( t , s ) 0 1 f 2 ( t , s , x ( s ) ) d s g 2 ( t , s ) + 0 φ ( t ) f 1 ( t , s , x ( s ) ) d s g 1 ( t , s ) 0 1 f 2 ( t , s , x ( s ) ) d s g 2 ( t , s ) 0 φ ( t ) f 1 ( t , s , x ( s ) ) d s g 1 ( t , s ) 0 1 f 2 ( t , s , x ( s ) ) d s g 2 ( t , s ) 0 φ ( t ) f 1 ( t , s , x ( s ) ) d s g 1 ( t , s ) 0 1 f 2 ( t , s , x ( s ) ) d s g 2 ( t , s ) 0 1 f 2 ( t , s , x ( s ) ) d s g 2 ( t , s ) + 0 1 f 2 ( t , s , x ( s ) ) d s g 2 ( t , s ) 0 φ ( t ) f 1 ( t , s , x ( s ) ) d s g 1 ( t , s ) 0 φ ( t ) f 1 ( t , s , x ( s ) ) d s g 1 ( t , s ) 0 φ ( t ) f 1 ( t , s , x ( s ) ) d s g 1 ( t , s ) 0 1 f 2 ( t , s , x ( s ) ) d s g 2 ( t , s ) 0 1 f 2 ( t , s , x ( s ) ) d s g 2 ( t , s ) + 0 1 f 2 ( t , s , x ( s ) ) d s g 2 ( t , s ) 0 1 f 2 ( t , s , x ( s ) ) d s g 2 ( t , s ) + 0 1 f 2 ( t , s , x ( s ) ) d s g 2 ( t , s ) 0 φ ( t ) f 1 ( t , s , x ( s ) ) d s g 1 ( t , s ) 0 φ ( t ) f 1 ( t , s , x ( s ) ) d s g 1 ( t , s ) + 0 φ ( t ) f 1 ( t , s , x ( s ) ) d s g 1 ( t , s ) 0 φ ( t ) f 1 ( t , s , x ( s ) ) d s g 1 ( t , s ) 0 φ ( t ) f 1 ( t , s , x ( s ) ) d s g 1 ( t , s ) 0 1 f 2 ( t , s , x ( s ) ) d s [ g 2 ( t , s ) g 2 ( t , s ) ] + 0 1 [ f 2 ( t , s , x ( s ) ) f 2 ( t , s , x ( s ) ) ] d s g 2 ( t , s ) + 0 1 f 2 ( t , s , x ( s ) ) d s g 2 ( t , s ) 0 φ ( t ) f 1 ( t , s , x ( s ) ) d s [ g 1 ( t , s ) g 1 ( t , s ) ] + 0 φ ( t ) [ f 1 ( t , s , x ( s ) ) f 1 ( t , s , x ( s ) ) ] d s g 1 ( t , s ) ( b + k r p ) sup t I s = 0 φ ( t ) g 1 ( t , s ) { ( b + k r ) [ g 2 ( t , 1 ) g 2 ( t , 1 ) ] [ g 2 ( t , 0 ) g 2 ( t , 0 ) ] + k x x [ g 2 ( t , 1 ) g 2 ( t , 0 ) ] } + ( b + k r ) [ g 2 ( t , 1 ) g 2 ( t , 0 ) ] { ( b + k r p ) [ g 1 ( t , φ ( t ) ) g 1 ( t , φ ( t ) ) ] [ g 1 ( t , 0 ) g 1 ( t , 0 ) ] + k x x sup t I s = 0 φ ( t ) g 1 ( t , s ) 2 ( b + k r p ) ( b + k r ) K δ + ( b + k r p ) k K μ x x + 2 ( b + k r p ) ( b + k r ) μ δ + ( b + k r ) k K μ x x ,

then

x x [ 1 k K μ [ ( b + k r ) + ( b + k r p ) ] ] 2 ( b + k r p ) ( b + k r ) [ K + μ ] δ

and

x x 2 ( b + k r p ) ( b + k r ) [ K + μ ] δ 1 k K μ [ ( b + k r ) + ( b + k r p ) ] = ε .

This completes the proof.□

5 Applications

  1. In this section, we use the concept and properties of fractional-order integral to show that the delay Volterra integral equation of fractional-order α ( 0 , 1 ]

    (3) x ( t ) = a ( t ) + 0 φ ( t ) ( t s ) α 1 Γ ( α ) f 1 ( t , s , x ( s ) ) d s 0 1 f 2 ( t , s , x ( s ) ) d s g 2 ( t , s ) , t [ 0 , 1 ]

    can be considered as a special case of the Volterra-Stieltjes integral equation (1).

    Let the function g 1 be given by

    g 1 ( t , s ) = t α ( t s ) α Γ ( α + 1 ) ,

    then

    g s = 1 ( t s ) 1 α > 0 ,

    d s g 1 ( t , s ) = ( t s ) α 1 Γ ( α ) d s

    and

    s = 0 t 1 [ g 1 ( t 2 , s ) g 1 ( t 1 , s ) ] = i = 1 n [ g 1 ( t 2 , s i ) g 1 ( t 1 , s i ) ] [ g 1 ( t 2 , s i 1 ) g 1 ( t 1 , s i 1 ) ] = i = 1 n { [ g 1 ( t 2 , s i 1 ) g 1 ( t 1 , s i 1 ) ] [ g 1 ( t 2 , s i ) g 1 ( t 1 , s i ) ] } = g 1 ( t 1 , t 1 ) g 1 ( t 2 , t 1 ) = 1 Γ ( α + 1 ) [ t 1 α t 2 α ( t 2 s ) α + ( t 1 s ) α ] ε .

    It is clear that the function g 1 satisfies assumptions (iv), (vi), (vii) and (v) (see [9,11]). This proves that the integral equation (3) is a special case of the integral equation (1).

  2. Chandrasekhar integral equations

  3. Let φ ( t ) = t , f 1 ( t , s , x ) = x p ( t ) , p = 1 , 2 in (3) and

    g 2 ( t , s ) = t ln t + s t , for t ( 0 , 1 ] , s I , 0 , for t = 0 , s I .

  4. Then the function g 2 satisfies assumptions (iv), (v) and (vi) (see [9,11]).

  5. Then equation (3) will be (see [24])

    (4) x ( t ) = a ( t ) + I α x p ( t ) 0 1 t t + s f 2 ( t , s , x ( s ) ) d s .

    Letting α 0 , then

    (5) x ( t ) = a ( t ) + x p ( t ) 0 1 t t + s f 2 ( t , s , x ( s ) ) d s .

    Let f 2 ( t , s , x ) = a ( s ) x ( s ) , at p = 1 we obtain the Chandrasekhar quadratic integral equation

    (6) x ( t ) = a ( t ) + x ( t ) 0 1 t t + s a ( s ) x ( s ) d s

    and at p = 2 we obtain the Chandrasekhar cubic integral equation

    (7) x ( t ) = a ( t ) + x 2 ( t ) 0 1 t t + s a ( s ) x ( s ) d s ,

    which are special cases of equation (1).

References

[1] J. Banaś and A. Martinon, Monotonic solutions of a quadratic integral equation of Volterra type, Comput. Math. Appl. 47 (2004), 271–279. 10.1016/S0898-1221(04)90024-7Search in Google Scholar

[2] J. Banaś and B. Rzepka, An application of a measure of noncompactness in the study of asymptotic stability, Appl. Math. Lett. 16 (2003), 1–6. 10.1016/S0893-9659(02)00136-2Search in Google Scholar

[3] J. Banaś and B. Rzepka, On existence and asymptotic stability of solutions of nonlinear integral equation, J. Math. Anal. Appl. 284 (2003), no. 1, 165–173. 10.1016/S0022-247X(03)00300-7Search in Google Scholar

[4] J. Banaś and B. Rzepka, Monotonic solutions of a quadratic integral equations of fractional-order, J. Math. Anal. Appl. 332 (2007), 1370–11378. 10.1016/j.jmaa.2006.11.008Search in Google Scholar

[5] J. Banaś and B. Rzepka, Nondecreasing solutions of a quadratic singular Volterra integral equation, Math. Comput. Model. 49 (2009), no. 3–4, 488–496. 10.1016/j.mcm.2007.10.021Search in Google Scholar

[6] J. Banaś, J. Caballero, J. Rocha, and K. Sadarangani, Monotonic solutions of a class of quadratic integral equation of Volterra type, Comput. Math. Appl. 49 (2005), 943–952. 10.1016/j.camwa.2003.11.001Search in Google Scholar

[7] J. Banaś and J. C. Mena, Some properties of nonlinear Volterra-Stieltjes integral operators, Comput. Math. Appl. 49 (2005), 1565–1573. 10.1016/j.camwa.2004.05.016Search in Google Scholar

[8] J. Banaś and J. Dronka, Integral operators of Volterra-Stieltjes type, their properties and applications, Math. Comput. Model. Dyn. Syst. 32 (2000), no. 11–13, 1321–1331. 10.1016/S0895-7177(00)00207-7Search in Google Scholar

[9] J. Banaś and K. Sadarangani, Solvability of Volterra-Stieltjes operator-integral equations and their applications, Comput. Math. Appl. 41 (2001), no. 12, 1535–1544. 10.1016/S0898-1221(01)00118-3Search in Google Scholar

[10] J. Banaś and T. Zając, A new approach to theory of functional integral equations of fractional order, J. Math. Anal. Appl. 375 (2011), 375–387. 10.1016/j.jmaa.2010.09.004Search in Google Scholar

[11] J. Banaś and D. O’Regan, Volterra-Stieltjes integral operators, Math. Comput. Model. Dyn. Syst. 41 (2005), 335–344. 10.1016/j.mcm.2003.02.014Search in Google Scholar

[12] J. Banaś and A. Dubiel, Solvability of a Volterra-Stieltjes integral equation in the class of functions having limits at infinity, EJQTDE 53 (2017), 1–17. 10.14232/ejqtde.2017.1.53Search in Google Scholar

[13] E. Ameer, H. Aydi, M. Arshad, and M. De la Sen, Hybrid Ćirić type graphic (ϒ,Λ)-contraction mappings with applications to electric circuit and fractional differential equations, Symmetry 12 (2020), no. 3, art. 467. 10.3390/sym12030467Search in Google Scholar

[14] H. Aydi, M. Jleli, and B. Samet, On positive solutions for a fractional thermostat model with a convex-concave source term via psi-Caputo fractional derivative, Mediterr. J. Math. 17 (2020), art. 16. 10.1007/s00009-019-1450-7Search in Google Scholar

[15] A. M. A. El-Sayed and H. H. G. Hashem, Integrable and continuous solutions of a nonlinear quadratic integral equation, EJQTDE 25 (2008), 1–10. 10.14232/ejqtde.2008.1.25Search in Google Scholar

[16] A. M. A. El-Sayed and Sh. M. Al-Issa, On the existence of solutions of a set-valued functional integral equation of Volterra-Stieltjes type and some applications, Adv. Differ. Equ. 2020 (2020), art. 59. 10.1186/s13662-020-2531-4Search in Google Scholar

[17] A. M. A. El-Sayed and Sh. M. Al-Issa, Existence of solutions for an ordinary second-order hybrid functional differential equation, Adv. Differ. Equ. 1 (2020), art. 296. 10.1186/s13662-020-02742-6Search in Google Scholar

[18] A. M. A. El-Sayed and Sh. M. Al-Issa, On a set-valued functional integral equation of Volterra-Stieltjes type, Int. J. Math. Comput. Sci. 21 (2020), no. 4, 273–285. 10.22436/jmcs.021.04.01Search in Google Scholar

[19] A. M. A. El-Sayed and Sh. M. Al-Issa, Monotonic integrable solution for a mixed type integral and differential inclusions of fractional orders, Int. J. Differ. Equ. Appl. 18 (2019), no. 1, 1–9. Search in Google Scholar

[20] A. M. A. El-Sayed and Sh. M. Al-Issa, Monotonic solutions for a quadratic integral equation of fractional order, AIMS Math. 3 (2004), 821–830. 10.3934/math.2019.3.821Search in Google Scholar

[21] A. M. A. El-Sayed and Y. M. Y. Omar, On the solvability of a delay Volterra-Stieltjes integral equation, Int. J. Differ. Equ. Appl. 18 (2019), no. 1, 49–62. Search in Google Scholar

[22] A. M. A. El-Sayed and Y. M. Y. Omar, On the solutions of a delay functional integral equation of Volterra-Stieltjes type, Int. J. Appl. Comput. Math. 6 (2020), art. 8. 10.1007/s40819-019-0757-1Search in Google Scholar

[23] A. N. Kolmogorov and S. V. Fomin, Introductory Real Analysis, 1st edition, Dover Publ. Inc., New York, 1975. Search in Google Scholar

[24] A. M. A. El-Sayed and Y. M. Y. Omar, p-Chandrasekhar integral equation, Adv. Math. Sci. J. 9 (2020), no. 12, 10305–10311. 10.37418/amsj.9.12.22Search in Google Scholar

Received: 2020-02-09
Accepted: 2021-02-09
Published Online: 2021-05-18

© 2021 Ahmed M. A. El-Sayed and Yasmin M. Y. Omar, published by De Gruyter

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Regular Articles
  2. Graded I-second submodules
  3. Corrigendum to the paper “Equivalence of the existence of best proximity points and best proximity pairs for cyclic and noncyclic nonexpansive mappings”
  4. Solving two-dimensional nonlinear fuzzy Volterra integral equations by homotopy analysis method
  5. Chandrasekhar quadratic and cubic integral equations via Volterra-Stieltjes quadratic integral equation
  6. On q-analogue of Janowski-type starlike functions with respect to symmetric points
  7. Inertial shrinking projection algorithm with self-adaptive step size for split generalized equilibrium and fixed point problems for a countable family of nonexpansive multivalued mappings
  8. On new stability results for composite functional equations in quasi-β-normed spaces
  9. Sampling and interpolation of cumulative distribution functions of Cantor sets in [0, 1]
  10. Meromorphic solutions of the (2 + 1)- and the (3 + 1)-dimensional BLMP equations and the (2 + 1)-dimensional KMN equation
  11. On the equivalence between weak BMO and the space of derivatives of the Zygmund class
  12. On some fixed point theorems for multivalued F-contractions in partial metric spaces
  13. On graded Jgr-classical 2-absorbing submodules of graded modules over graded commutative rings
  14. On almost e-ℐ-continuous functions
  15. Analytical properties of the two-variables Jacobi matrix polynomials with applications
  16. New soft separation axioms and fixed soft points with respect to total belong and total non-belong relations
  17. Pythagorean harmonic summability of Fourier series
  18. More on μ-semi-Lindelöf sets in μ-spaces
  19. Range-Kernel orthogonality and elementary operators on certain Banach spaces
  20. A Cauchy-type generalization of Flett's theorem
  21. A self-adaptive Tseng extragradient method for solving monotone variational inequality and fixed point problems in Banach spaces
  22. Robust numerical method for singularly perturbed differential equations with large delay
  23. Special Issue on Equilibrium Problems: Fixed-Point and Best Proximity-Point Approaches
  24. Strong convergence inertial projection algorithm with self-adaptive step size rule for pseudomonotone variational inequalities in Hilbert spaces
  25. Two strongly convergent self-adaptive iterative schemes for solving pseudo-monotone equilibrium problems with applications
  26. Some aspects of generalized Zbăganu and James constant in Banach spaces
  27. An iterative approximation of common solutions of split generalized vector mixed equilibrium problem and some certain optimization problems
  28. Generalized split null point of sum of monotone operators in Hilbert spaces
  29. Comparison of modified ADM and classical finite difference method for some third-order and fifth-order KdV equations
  30. Solving system of linear equations via bicomplex valued metric space
  31. Special Issue on Computational and Theoretical Studies of free Boundary Problems and their Applications
  32. Dynamical study of Lyapunov exponents for Hide’s coupled dynamo model
  33. A statistical study of COVID-19 pandemic in Egypt
  34. Global existence and dynamic structure of solutions for damped wave equation involving the fractional Laplacian
  35. New class of operators where the distance between the identity operator and the generalized Jordan ∗-derivation range is maximal
  36. Some results on generalized finite operators and range kernel orthogonality in Hilbert spaces
  37. Structures of spinors fiber bundles with special relativity of Dirac operator using the Clifford algebra
  38. A new iteration method for the solution of third-order BVP via Green's function
  39. Numerical treatment of the generalized time-fractional Huxley-Burgers’ equation and its stability examination
  40. L -error estimates of a finite element method for Hamilton-Jacobi-Bellman equations with nonlinear source terms with mixed boundary condition
  41. On shrinkage estimators improving the positive part of James-Stein estimator
  42. A revised model for the effect of nanoparticle mass flux on the thermal instability of a nanofluid layer
  43. On convergence of explicit finite volume scheme for one-dimensional three-component two-phase flow model in porous media
  44. An adjusted Grubbs' and generalized extreme studentized deviation
  45. Existence and uniqueness of the weak solution for Keller-Segel model coupled with Boussinesq equations
  46. Special Issue on Advanced Numerical Methods and Algorithms in Computational Physics
  47. Stability analysis of fractional order SEIR model for malaria disease in Khyber Pakhtunkhwa
Downloaded on 10.1.2026 from https://www.degruyterbrill.com/document/doi/10.1515/dema-2021-0003/html
Scroll to top button