Abstract
In this work, optimal rigidity results for eigenvalues on Kähler manifolds with positive Ricci lower bound are established. More precisely, for those Kähler manifolds whose first eigenvalue agrees with the Ricci lower bound, we show that the complex projective space is the only one with the largest multiplicity of the first eigenvalue. Moreover, there is a specific gap between the largest and the second largest multiplicity. In the Kähler–Einstein case, almost rigidity results for eigenvalues are also obtained.
Funding source: National Key Research and Development Program of China
Award Identifier / Grant number: 2024YFA1014800
Award Identifier / Grant number: 2023YFA1009900
Funding source: National Natural Science Foundation of China
Award Identifier / Grant number: 12471052
Award Identifier / Grant number: 12271008
Award Identifier / Grant number: 12031017
Award Identifier / Grant number: 12101052
Award Identifier / Grant number: 12271040
Award Identifier / Grant number: 12271038
Funding source: Natural Science Foundation of Zhejiang Province
Award Identifier / Grant number: LR23A010001
Funding statement: J. Chu was partially supported by National Key R&D Program of China 2024YFA1014800 and 2023YFA1009900, NSFC grants 12471052 and 12271008, and the Fundamental Research Funds for the Central Universities, Peking University. F. Wang was partially supported by NSFC grant 12031017 and NSF of Zhejiang Province for Distinguished Young Scholars grant LR23A010001. K. Zhang was partially supported by NSFC grants 12101052, 12271040, and 12271038.
Acknowledgements
The authors thank Lifan Guan, Wenshuai Jiang and Jun Yu for helpful discussions.
References
[1] E. Aubry, Pincement sur le spectre et le volume en courbure de Ricci positive, Ann. Sci. Éc. Norm. Supér. (4) 38 (2005), no. 3, 387–405. 10.1016/j.ansens.2005.01.002Suche in Google Scholar
[2] S. Bando and T. Mabuchi, Uniqueness of Einstein Kähler metrics modulo connected group actions, Algebraic geometry (Sendai 1985), Adv. Stud. Pure Math. 10, North-Holland, Amsterdam (1987), 11–40. 10.2969/aspm/01010011Suche in Google Scholar
[3] R. J. Berman and B. Berndtsson, The volume of Kähler–Einstein Fano varieties and convex bodies, J. reine angew. Math. 723 (2017), 127–152. 10.1515/crelle-2014-0069Suche in Google Scholar
[4] F. Bien and M. Brion, Automorphisms and local rigidity of regular varieties, Compos. Math. 104 (1996), no. 1, 1–26. Suche in Google Scholar
[5] H.-D. Cao and L. Ni, Matrix Li–Yau–Hamilton estimates for the heat equation on Kähler manifolds, Math. Ann. 331 (2005), no. 4, 795–807. 10.1007/s00208-004-0605-3Suche in Google Scholar
[6] J. Cheeger and T. H. Colding, On the structure of spaces with Ricci curvature bounded below. I, J. Differential Geom. 46 (1997), no. 3, 406–480. 10.4310/jdg/1214459974Suche in Google Scholar
[7] J. Cheeger and T. H. Colding, On the structure of spaces with Ricci curvature bounded below. II, J. Differential Geom. 54 (2000), no. 1, 13–35. 10.4310/jdg/1214342145Suche in Google Scholar
[8] J. Cheeger and T. H. Colding, On the structure of spaces with Ricci curvature bounded below. III, J. Differential Geom. 54 (2000), no. 1, 37–74. 10.4310/jdg/1214342146Suche in Google Scholar
[9] S. Y. Cheng and S. T. Yau, Differential equations on Riemannian manifolds and their geometric applications, Comm. Pure Appl. Math. 28 (1975), no. 3, 333–354. 10.1002/cpa.3160280303Suche in Google Scholar
[10] T. H. Colding and A. Naber, Sharp Hölder continuity of tangent cones for spaces with a lower Ricci curvature bound and applications, Ann. of Math. (2) 176 (2012), no. 2, 1173–1229. 10.4007/annals.2012.176.2.10Suche in Google Scholar
[11] V. Datar and H. Seshadri, Diameter rigidity for Kähler manifolds with positive bisectional curvature, Math. Ann. 385 (2023), no. 1–2, 471–479. 10.1007/s00208-021-02355-8Suche in Google Scholar
[12] V. Datar, H. Seshadri and J. Song, Metric rigidity of Kähler manifolds with lower Ricci bounds and almost maximal volume, Proc. Amer. Math. Soc. 149 (2021), no. 8, 3569–3574. 10.1090/proc/15473Suche in Google Scholar
[13] S. Donaldson and S. Sun, Gromov–Hausdorff limits of Kähler manifolds and algebraic geometry, Acta Math. 213 (2014), no. 1, 63–106. 10.1007/s11511-014-0116-3Suche in Google Scholar
[14] K. Fujita, Optimal bounds for the volumes of Kähler–Einstein Fano manifolds, Amer. J. Math. 140 (2018), no. 2, 391–414. 10.1353/ajm.2018.0009Suche in Google Scholar
[15] A. Futaki, Kähler–Einstein metrics and integral invariants, Lecture Notes in Math. 1314, Springer, Berlin 1988. 10.1007/BFb0078084Suche in Google Scholar
[16] A. V. Isaev, Proper actions of high-dimensional groups on complex manifolds, J. Geom. Anal. 17 (2007), no. 4, 649–667. 10.1007/BF02937432Suche in Google Scholar
[17]
A. V. Isaev and N. G. Kruzhilin,
Proper actions of Lie groups of dimension
[18] W. Kaup, Reelle Transformationsgruppen und invariante Metriken auf komplexen Räumen, Invent. Math. 3 (1967), 43–70. 10.1007/BF01425490Suche in Google Scholar
[19] S. Kobayashi and K. Nomizu, Foundations of differential geometry. Vol. II, Interscience Tracts Pure Appl. Math. 15, Interscience, New York 1969. Suche in Google Scholar
[20] P. Li, Geometric analysis, Cambridge Stud. Adv. Math. 134, Cambridge University, Cambridge 2012. 10.7202/1018492arSuche in Google Scholar
[21] P. Li, On the spectral rigidity of Einstein-type Kähler manifolds, preprint (2018), https://arxiv.org/abs/1804.00517. Suche in Google Scholar
[22] P. Li and J. Wang, Comparison theorem for Kähler manifolds and positivity of spectrum, J. Differential Geom. 69 (2005), no. 1, 43–74. 10.4310/jdg/1121540339Suche in Google Scholar
[23] A. Lichnerowicz, Géométrie des groupes de transformations, Trav. Rech. Math., Dunod, Paris 1958. Suche in Google Scholar
[24] G. Liu, Local comparison theorems for Kähler manifolds, Pacific J. Math. 254 (2011), no. 2, 345–360. 10.2140/pjm.2011.254.345Suche in Google Scholar
[25] G. Liu, Kähler manifolds with Ricci curvature lower bound, Asian J. Math. 18 (2014), no. 1, 69–99. 10.4310/AJM.2014.v18.n1.a4Suche in Google Scholar
[26] G. Liu and Y. Yuan, Diameter rigidity for Kähler manifolds with positive bisectional curvature, Math. Z. 290 (2018), no. 3–4, 1055–1061. 10.1007/s00209-018-2052-ySuche in Google Scholar
[27] J. Lott, Comparison geometry of holomorphic bisectional curvature for Kähler manifolds and limit spaces, Duke Math. J. 170 (2021), no. 14, 3039–3071. 10.1215/00127094-2021-0058Suche in Google Scholar
[28] Y. Matsushima, Sur la structure du groupe d’homéomorphismes analytiques d’une certaine variété kählérienne, Nagoya Math. J. 11 (1957), 145–150. 10.1017/S0027763000002026Suche in Google Scholar
[29] L. Ni and F. Zheng, Comparison and vanishing theorems for Kähler manifolds, Calc. Var. Partial Differential Equations 57 (2018), no. 6, Paper No. 151. 10.1007/s00526-018-1431-xSuche in Google Scholar
[30] M. Obata, Certain conditions for a Riemannian manifold to be isometric with a sphere, J. Math. Soc. Japan 14 (1962), 333–340. 10.2969/jmsj/01430333Suche in Google Scholar
[31] P. Petersen, On eigenvalue pinching in positive Ricci curvature, Invent. Math. 138 (1999), no. 1, 1–21. 10.1007/s002220050339Suche in Google Scholar
[32] A. Petracci, On deformations of toric Fano varieties, Interactions with lattice polytopes, Springer Proc. Math. Stat. 386, Springer, Cham (2022), 287–314. 10.1007/978-3-030-98327-7_14Suche in Google Scholar
[33] L.-F. Tam and C. Yu, Some comparison theorems for Kähler manifolds, Manuscripta Math. 137 (2012), no. 3–4, 483–495. 10.1007/s00229-011-0477-2Suche in Google Scholar
[34] S. Tanno, The automorphism groups of almost Hermitian manifolds, Trans. Amer. Math. Soc. 137 (1969), 269–275. 10.1090/S0002-9947-1969-0236850-1Suche in Google Scholar
[35]
G. Tian,
Partial
[36] G. Tian, K-stability and Kähler–Einstein metrics, Comm. Pure Appl. Math. 68 (2015), no. 7, 1085–1156. 10.1002/cpa.21578Suche in Google Scholar
[37] G. Tian and B. Wang, On the structure of almost Einstein manifolds, J. Amer. Math. Soc. 28 (2015), no. 4, 1169–1209. 10.1090/jams/834Suche in Google Scholar
[38] G. Tian and F. Wang, On the existence of conic Kähler–Einstein metrics, Adv. Math. 375 (2020), Article ID 107413. 10.1016/j.aim.2020.107413Suche in Google Scholar
[39] F. Wang, A volume stability theorem on toric manifolds with positive Ricci curvature, Proc. Amer. Math. Soc. 143 (2015), no. 8, 3613–3618. 10.1090/proc/12174Suche in Google Scholar
[40]
K. Yano,
On 𝑛-dimensional Riemannian spaces admitting a group of motions of order
[41] K. Zhang, On the optimal volume upper bound for Kähler manifolds with positive Ricci curvature (with an appendix by Yuchen Liu), Int. Math. Res. Not. IMRN 2022 (2022), no. 8, 6135–6156. 10.1093/imrn/rnaa295Suche in Google Scholar
© 2025 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Covariant projective representations of Hilbert–Lie groups
- Solutions of the minimal surface equation and of the Monge–Ampère equation near infinity
- A Lindemann–Weierstrass theorem for 𝐸-functions
- Topology and dynamics of compact plane waves
- Diameter of Kähler currents
- CscK metrics near the canonical class
- On 3-nondegenerate CR manifolds in dimension 7 (I): The transitive case
- The rigidity of eigenvalues on Kähler manifolds with positive Ricci lower bound
- Hodge–Tate stacks and non-abelian 𝑝-adic Hodge theory of v-perfect complexes on rigid spaces
Artikel in diesem Heft
- Frontmatter
- Covariant projective representations of Hilbert–Lie groups
- Solutions of the minimal surface equation and of the Monge–Ampère equation near infinity
- A Lindemann–Weierstrass theorem for 𝐸-functions
- Topology and dynamics of compact plane waves
- Diameter of Kähler currents
- CscK metrics near the canonical class
- On 3-nondegenerate CR manifolds in dimension 7 (I): The transitive case
- The rigidity of eigenvalues on Kähler manifolds with positive Ricci lower bound
- Hodge–Tate stacks and non-abelian 𝑝-adic Hodge theory of v-perfect complexes on rigid spaces