Startseite Central values of additive twists of cuspidal L-functions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Central values of additive twists of cuspidal L-functions

  • Asbjørn Christian Nordentoft ORCID logo EMAIL logo
Veröffentlicht/Copyright: 2. April 2021

Abstract

Additive twists are important invariants associated to holomorphic cusp forms; they encode the Eichler–Shimura isomorphism and contain information about automorphic L-functions. In this paper we prove that central values of additive twists of the L-function associated to a holomorphic cusp form f of even weight k are asymptotically normally distributed. This generalizes (to k4) a recent breakthrough of Petridis and Risager concerning the arithmetic distribution of modular symbols. Furthermore, we give as an application an asymptotic formula for the averages of certain “wide” families of automorphic L-functions consisting of central values of the form L(fχ,1/2) with χ a Dirichlet character.

Acknowledgements

I would like to express my gratitude to my advisor Morten Risager for suggesting this problem to me and for our countless stimulating discussions. I would also like to thank Yiannis Petridis for his time and insight.

References

[1] S. Bettin, High moments of the Estermann function, Algebra Number Theory 13 (2019), no. 2, 251–300. 10.2140/ant.2019.13.251Suche in Google Scholar

[2] S. Bettin and S. Drappeau, Limit laws for rational continued fractions and value distribution of quantum modular forms, preprint (2019), https://arxiv.org/abs/1903.00457. Suche in Google Scholar

[3] V. Blomer, É. Fouvry, E. Kowalski, P. Michel, D. Milićević and W. Sawin, The second moment theory of families of L-functions, preprint (2018), https://arxiv.org/abs/1804.01450. Suche in Google Scholar

[4] R. Bruggeman and N. Diamantis, Fourier coefficients of Eisenstein series formed with modular symbols and their spectral decomposition, J. Number Theory 167 (2016), 317–335. 10.1016/j.jnt.2016.03.009Suche in Google Scholar

[5] G. Chinta, Analytic ranks of elliptic curves over cyclotomic fields, J. reine angew. Math. 544 (2002), 13–24. 10.1515/crll.2002.021Suche in Google Scholar

[6] G. Chinta and C. O’Sullivan, Non-holomorphic poincaré series constructed from derivatives and antiderivatives of cusp forms and bounds on period polynomial, unpublished (2002). Suche in Google Scholar

[7] Y. Colin de Verdière, Pseudo-laplaciens. II, Ann. Inst. Fourier (Grenoble) 33 (1983), no. 2, 87–113. 10.5802/aif.917Suche in Google Scholar

[8] N. Diamantis, J. Hoffstein, E. M. Kıral and M. Lee, Shifted convolutions and a conjecture by Mazur, Rubin and Stein, preprint (2018), https://arxiv.org/abs/1807.02506. Suche in Google Scholar

[9] N. Diamantis, J. Hoffstein, E. M. Kıral and M. Lee, Additive twists and a conjecture by Mazur, Rubin and Stein, J. Number Theory 209 (2020), 1–36. 10.1016/j.jnt.2019.11.016Suche in Google Scholar

[10] W. Duke, J. B. Friedlander and H. Iwaniec, Bounds for automorphic L-functions. III, Invent. Math. 143 (2001), no. 2, 221–248. 10.1007/s002220000104Suche in Google Scholar

[11] W. Duke, J. B. Friedlander and H. Iwaniec, The subconvexity problem for Artin L-functions, Invent. Math. 149 (2002), no. 3, 489–577. 10.1007/s002220200223Suche in Google Scholar

[12] M. Eichler, Eine Verallgemeinerung der Abelschen Integrale, Sammelband zu Ehren des 250. Geburtstages Leonhard Eulers, Akademie-Verlag, Berlin (1959), 112–115. 10.1007/BF01258863Suche in Google Scholar

[13] J. D. Fay, Fourier coefficients of the resolvent for a Fuchsian group, J. reine angew. Math. 293(294) (1977), 143–203. 10.1515/crll.1977.293-294.143Suche in Google Scholar

[14] S. S. Gelbart and S. D. Miller, Riemann’s zeta function and beyond, Bull. Amer. Math. Soc. (N. S.) 41 (2004), no. 1, 59–112. 10.1090/S0273-0979-03-00995-9Suche in Google Scholar

[15] D. Goldfeld, The distribution of modular symbols, Number theory in progress. Vol. 2, De Gruyter, Berlin (1999), 849–865. 10.1515/9783110285581.849Suche in Google Scholar

[16] D. Goldfeld, Zeta functions formed with modular symbols, Automorphic forms, automorphic representations, and arithmetic (Fort Worth 1996), Proc. Sympos. Pure Math. 66, American Mathematical Society, Providence (1999), 111–121. 10.1090/pspum/066.1/1703748Suche in Google Scholar

[17] D. Goldfeld, Spectral methods of automorphic forms, 2nd ed., Grad. Stud. in Math. 53, American Mathematical Society, Providence 2002. 10.1090/gsm/053/05Suche in Google Scholar

[18] H. Iwaniec, Topics in classical automorphic forms, Grad. Stud. Math. 17, American Mathematical Society, Providence 1997. 10.1090/gsm/017Suche in Google Scholar

[19] H. Iwaniec and E. Kowalski, Analytic number theory, Amer. Math. Soc. Colloq. Publ. 53, American Mathematical Society, Providence 2004. 10.1090/coll/053Suche in Google Scholar

[20] M. Jutila, Lectures on a method in the theory of exponential sums, Tata Inst. Fundam. Res. Lect. Math. Phys. 80, Tata Institute of Fundamental Research, Bombay 1987. Suche in Google Scholar

[21] H. H. Kim, Functoriality for the exterior square of GL4 and the symmetric fourth of GL2, J. Amer. Math. Soc. 16 (2003), no. 1, 139–183. 10.1090/S0894-0347-02-00410-1Suche in Google Scholar

[22] E. Kowalski, P. Michel and J. VanderKam, Rankin–Selberg L-functions in the level aspect, Duke Math. J. 114 (2002), no. 1, 123–191. 10.1215/S0012-7094-02-11416-1Suche in Google Scholar

[23] J. Lee and H.-S. Sun, Dynamics of continued fractions and distribution of modular symbols, preprints (2019), https://arxiv.org/abs/1902.06277. 10.29007/25x3Suche in Google Scholar

[24] J. I. Manin, Periods of cusp forms, and p-adic Hecke series, Mat. USSR-Sbornik 21) (1973), 3, 371–393. 10.1070/SM1973v021n03ABEH002022Suche in Google Scholar

[25] B. Mazur and K. Rubin, Arithmetic conjectures suggested by the statistical behavior of modular symbols, preprint (2019), https://arxiv.org/abs/1910.12798; to appear in Exp. Math. 10.1080/10586458.2021.1982424Suche in Google Scholar

[26] L. Merel, Symboles de Manin et valeurs de fonctions L, Algebra, arithmetic, and geometry: In honor of Yu. I. Manin. Vol. II, Progr. Math. 270, Birkhäuser, Boston (2009), 283–309. 10.1007/978-0-8176-4747-6_9Suche in Google Scholar

[27] P. Michel, Analytic number theory and families of automorphic L-functions, Automorphic forms and applications, IAS/Park City Math. Ser. 12, American Mathematical Society, Providence (2007), 181–295. 10.1090/pcms/012/05Suche in Google Scholar

[28] A. C. Nordentoft, A note on additive twists, reciprocity laws and quantum modular forms, Ramanujan J. (2020), 10.1007/s11139-020-00270-1. 10.1007/s11139-020-00270-1Suche in Google Scholar

[29] A. C. Nordentoft, On the distribution of periods of holomorphic cusp forms and zeroes of period polynomials, Int. Math. Res. Not. IMRN 2021 (2021), no. 3, 1980–2006. 10.1093/imrn/rnaa194Suche in Google Scholar

[30] Y. N. Petridis and M. S. Risager, Modular symbols have a normal distribution, Geom. Funct. Anal. 14 (2004), no. 5, 1013–1043. 10.1007/s00039-004-0481-8Suche in Google Scholar

[31] Y. N. Petridis and M. S. Risager, Arithmetic statistics of modular symbols, Invent. Math. 212 (2018), no. 3, 997–1053. 10.1007/s00222-017-0784-7Suche in Google Scholar

[32] D. E. Rohrlich, Nonvanishing of L-functions for GL(2), Invent. Math. 97 (1989), no. 2, 381–403. 10.1007/BF01389047Suche in Google Scholar

[33] R. J. Serfling, Approximation theorems of mathematical statistics, John Wiley & Sons, New York 1980. 10.1002/9780470316481Suche in Google Scholar

[34] G. Shimura, On the holomorphy of certain Dirichlet series, Proc. Lond. Math. Soc. (3) 31 (1975), no. 1, 79–98. 10.1007/978-1-4612-2076-3_19Suche in Google Scholar

[35] G. Shimura, Introduction to the arithmetic theory of automorphic functions, Publ. Math. Soc. Japan 11, Princeton University, Princeton 1994. Suche in Google Scholar

[36] H.-S. Sun, A proof of the conjecture of Mazur–Rubin–Stein, Bull. Korean Math. Soc. 58 (2021), no. 1, 163–170. Suche in Google Scholar

[37] E. C. Titchmarsh, The theory of the Riemann zeta-function, 2nd ed., Oxford University, New York 1986. Suche in Google Scholar

[38] D. Zagier, Quantum modular forms, Quanta of maths, Clay Math. Proc. 11, American Mathematical Society, Providence (2010), 659–675. Suche in Google Scholar

Received: 2020-05-04
Revised: 2021-02-25
Published Online: 2021-04-02
Published in Print: 2021-07-01

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 29.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/crelle-2021-0013/html?lang=de
Button zum nach oben scrollen