Home Residues on affine Grassmannians
Article
Licensed
Unlicensed Requires Authentication

Residues on affine Grassmannians

  • Mathieu Florence and Philippe Gille EMAIL logo
Published/Copyright: March 13, 2021

Abstract

Given a linear group G over a field k, we define a notion of index and residue of an element gG(k((t))). The index r(g) is a rational number and the residue a group homomorphism res(g):𝔾a or 𝔾mG. This provides an alternative proof of Gabber’s theorem stating that G has no subgroups isomorphic to 𝔾a or 𝔾m iff G(k[[t]])=G(k((t))). In the case of a reductive group, we offer an explicit connection with the theory of affine Grassmannians.

Award Identifier / Grant number: ANR Geolie

Award Identifier / Grant number: ANR-15-CE 40-0012

Funding statement: The authors are supported by the French National Research Agency, project ANR Geolie, ANR-15-CE 40-0012.

A Appendix: Descent

Lemma A.1.

Let S be a scheme. Let G be a S-group scheme flat of finite type. We are given a left action of G on an S-scheme X of finite type such that X admits a G-linearized line bundle L which is relatively ample over S. Let T be an S-scheme and let f:ET be a GT-torsor. Then the contracted product EGXT over T is representable by a T-scheme. Furthermore, we have:

  1. The line bundle =EG on EGXT is relatively ample over T.

  2. If a S-group scheme J acts (on the left) on f:ET such that T admits a J-linearized line bundle which is relatively ample over S, then EGXT admits a J-linearized line bundle which is relatively ample over T.

Proof.

The first part with property (i) is [2, Section 10.2, Lemme 6]. For establishing (ii), we are given a J-linearized line bundle 𝒩0 on T which is relatively ample over S. We consider the mapping h:EGXTT, we know that there exists a positive integer n such that the line bundle 𝒩=h*(𝒩0)n on EGXTT is relatively ample over T (see [18, 4.6.13 (ii)]). This line bundle is J-linearized as desired. ∎

Lemma A.2.

Let S be a scheme and let G be a flat S-group scheme locally of finite type. We are given a G-morphism of S-schemes f:XY. We assume that G acts freely on X and on Y, that f is affine and that the fppf quotient Y/G is representable by a S-scheme. Then the fppf quotient X/G is representable by an S-scheme.

Proof.

Put Z:=Y/G. Assume first that the G-torsor YZ is trivial. Equivalently, the G-scheme Y is isomorphic, over S, to G×SZ. Choosing such an isomorphism allows to consider f as a G-morphism XG×SZ. Put X0:=f-1(e×SZ); it is a closed subscheme of X, which is transverse to the G-action: the natural G-morphism G×SX0X is an isomorphism. Thus, X/G is represented by X0.

For the general case, we proceed by descent. Considering f as a morphism of Z-schemes, we may replace S by Z (and G by G×SZ), and assume for simplicity that Z=S. Hence, Y is a G-torsor over S. Put S:=Y. We are going to base-change the situation via the morphism SS. Put

f:=f×SS:X:=X×SSY:=Y×SS.

Now, the G-torsor YS is trivial, so that the quotient XX/G exists (and is a trivial G-torsor) by the discussion above. Since XY is affine, it follows that X/GY/G=S is affine as well. It is equipped with a canonical descent data for the fpqc morphism SS. Hence, this data is effective (by fpqc descent for affine schemes), yielding an arrow X~S. Now, using descent for morphisms, the S-arrow XX/G descends to an S-arrow XX~. This is the quotient XX/G we sought for. This fact can, again, be checked by descent. ∎

Acknowledgements

It is a pleasure to thank Ofer Gabber and Laurent Moret-Bailly for useful conversations. We thank also Simon Riche and Xinwen Zhu for their expertise on affine Grassmannians and Alexis Bouthier for his reading. Finally, we would like to thank the reviewers for their helpful comments.

References

[1] A. Borel and J. Tits, Homomorphismes “abstraits” de groupes algébriques simples, Ann. of Math. (2) 97 (1973), 499–571. 10.2307/1970833Search in Google Scholar

[2] S. Bosch, W. Lütkebohmert and M. Raynaud, Néron models, Ergeb. Math. Grenzgeb. (3) 21, Springer, Berlin 1990. 10.1007/978-3-642-51438-8Search in Google Scholar

[3] A. Bouthier and K. Česnavičius, Torsors on loop groups and the Hitchin fibration, preprint (2019), https://arxiv.org/abs/1908.07480; to appear in Ann. Sci. Éc. Norm. Supér. (4). Search in Google Scholar

[4] F. Bruhat and J. Tits, Groupes réductifs sur un corps local I, Publ. Math. Inst. Hautes Études Sci. 41 (1972), 5–251. 10.1007/BF02715544Search in Google Scholar

[5] J.-L. Colliot-Thélène and M. Ojanguren, Espaces principaux homogènes localement triviaux, Publ. Math. Inst. Hautes Études Sci. 75 (1992), 97–122. 10.1007/BF02699492Search in Google Scholar

[6] J.-L. Colliot-Thélène and J.-J. Sansuc, Principal homogeneous spaces under flasque tori: Applications, J. Algebra 106 (1987), no. 1, 148–205. 10.1016/0021-8693(87)90026-3Search in Google Scholar

[7] B. Conrad, The structure of solvable groups over general fields, Autours des schémas en groupes. Vol. II, Panor. Synthèses 46, Société Mathématique de France, Paris (2015), 159–192. Search in Google Scholar

[8] B. Conrad, O. Gabber and G. Prasad, Pseudo-reductive groups, Cambridge University, Cambridge 2016. 10.1017/CBO9781316092439Search in Google Scholar

[9] C. Demarche, Cohomologie de Hochschild non Abélienne et extensions de Faisceaux en groupes, Autours des schémas en groupes. Vol. II, Panor. Synthèses 46, Société Mathématique de France, Paris (2015), 255–292. Search in Google Scholar

[10] M. Demazure and P. Gabriel, Groupes algébriques, North-Holland, Amsterdam 1970. Search in Google Scholar

[11] M. Demazure and A. Grothendieck, Schémas en groupes. I: Propriétés générales des schémas en groupes, Séminaire de Géométrie Algébrique du Bois Marie 1962/64, Lecture Notes in Math. 151, Springer, Berlin 1970. 10.1007/BFb0058993Search in Google Scholar

[12] M. Florence, Points rationnels sur les espaces homogènes et leurs compactifications, Transform. Groups 11 (2006), no. 2, 161–176. 10.1007/s00031-004-1107-9Search in Google Scholar

[13] O. Gabber, On pseudo-reductive groups and compactification theorems, Oberwolfach Reports 9 (2012), 2371–2374. Search in Google Scholar

[14] O. Gabber, P. Gille and L. Moret-Bailly, Fibrés principaux sur les corps valués henséliens, Algebr. Geom. 1 (2014), no. 5, 573–612. 10.14231/AG-2014-025Search in Google Scholar

[15] P. Gille, Torseurs sur la droite affine et R-équivalence, Thèse, Orsay 1994. Search in Google Scholar

[16] J. Giraud, Cohomologie non abélienne, Grundlehren Math. Wiss. 179, Springer, Berlin, 1971. 10.1007/978-3-662-62103-5Search in Google Scholar

[17] U. Görtz, Affine Springer fibers and affine Deligne–Lusztig varieties, Affine flag manifolds and principal bundles, Trends Math., Birkhäuser/Springer, Basel (2010), 1–50. 10.1007/978-3-0346-0288-4_1Search in Google Scholar

[18] A. Grothendieck, Éléments de géométrie algébrique. II: Étude globale élémentaire de quelques classe de morphismes, Publ. Math. Inst. Hautes Études Sci. 8 (1961), 1–122. 10.1007/BF02699291Search in Google Scholar

[19] A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. II, Publ. Math. Inst. Hautes Études Sci. 24 (1965), 5–23. 10.1007/BF02684322Search in Google Scholar

[20] A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. III, Publ. Math. Inst. Hautes Études Sci. 28 (1966), 1–255. 10.1007/BF02684343Search in Google Scholar

[21] A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. IV, Publ. Math. Inst. Hautes Études Sci. 32 (1967), 5–36. 10.1007/BF02732123Search in Google Scholar

[22] N. Guo, The Grothendieck–Serre conjecture over semilocal Dedekind rings, Transform. Groups (2020), 10.1007/s00031-020-09619-8. 10.1007/s00031-020-09619-8Search in Google Scholar

[23] B. C. Ngô and P. Polo, Résolutions de Demazure affines et formule de Casselman–Shalika géométrique, J. Algebraic Geom. 10 (2001), no. 3, 515–547. Search in Google Scholar

[24] G. Prasad, Elementary proof of a theorem of Bruhat–Tits–Rousseau and of a theorem of Tits, Bull. Soc. Math. France 110 (1982), no. 2, 197–202. 10.24033/bsmf.1959Search in Google Scholar

[25] X. Zhu, An introduction to affine Grassmannians and the geometric Satake equivalence, Geometry of moduli spaces and representation theory, IAS/Park City Math. Ser. 24, American Mathematical Society, Providence (2017), 59–154. 10.1090/pcms/024/02Search in Google Scholar

[26] Stacks project, https://stacks.math.columbia.edu. Search in Google Scholar

Received: 2019-11-27
Revised: 2020-11-06
Published Online: 2021-03-13
Published in Print: 2021-07-01

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 31.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/crelle-2021-0007/html
Scroll to top button