Startseite Non-arithmetic lattices and the Klein quartic
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Non-arithmetic lattices and the Klein quartic

  • Martin Deraux EMAIL logo
Veröffentlicht/Copyright: 9. März 2017

Abstract

We give an algebro-geometric construction of some of the non-arithmetic ball quotients constructed by the author, Parker and Paupert. The new construction reveals a relationship between the corresponding orbifold fundamental groups and the automorphism group of the Klein quartic, and also with groups constructed by Barthel–Hirzebruch–Höfer and Couwenberg–Heckman–Looijenga.

Acknowledgements

I would like to thank Stéphane Druel for his invaluable help with some of the technical details needed in the proof, Philippe Eyssidieux for his interest in this work, and Michel Brion for pointing to precious references about the invariants of the automorphism group of the Klein quartic. I also thank the referees for various suggestions that helped improve the manuscript.

References

[1] C. B. Allendoerfer and A. Weil, The Gauss–Bonnet theorem for Riemannian polyhedra, Trans. Amer. Math. Soc. 53 (1943), 101–129. 10.1090/S0002-9947-1943-0007627-9Suche in Google Scholar

[2] E. Bannai, Fundamental groups of the spaces of regular orbits of the finite unitary reflection groups of dimension 2, J. Math. Soc. Japan 28 (1976), 447–454. 10.2969/jmsj/02830447Suche in Google Scholar

[3] G. Barthel, F. Hirzebruch and T. Höfer, Geradenkonfigurationen und algebraische Flächen, Asp. Math. 4, Friedrich Vieweg & Sohn, Braunschweig 1987. 10.1007/978-3-322-92886-3Suche in Google Scholar

[4] E. Brown and N. Loehr, Why is PSL(2,7)GL(3,2)?, Amer. Math. Monthly 116 (2009), no. 8, 727–732. 10.4169/193009709X460859Suche in Google Scholar

[5] C. Chevalley, Invariants of finite groups generated by reflections, Amer. J. Math. 77 (1995), no. 4, 778–782. 10.2307/2372597Suche in Google Scholar

[6] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of finite groups. Maximal subgroups and ordinary characters for simple groups, Clarendon Press, Oxford 1985. Suche in Google Scholar

[7] W. Couwenberg, G. Heckman and E. Looijenga, Geometric structures on the complement of a projective arrangement, Publ. Math. Inst. Hautes Études Sci. 101 (2005), 69–161. 10.1007/s10240-005-0032-3Suche in Google Scholar

[8] D. A. Cox, J. B. Little and H. K. Schenck, Toric varieties, American Mathematical Society, Providence 2011. 10.1090/gsm/124Suche in Google Scholar

[9] P. Deligne and G. D. Mostow, Commensurabilities among lattices in PU(1,n), Ann. of Math. Stud. 132, Princeton University Press, Princeton 1993. 10.1515/9781400882519Suche in Google Scholar

[10] M. Deraux, Non-arithmetic ball quotients from a configuration of elliptic curves in an Abelian surface, preprint (2016), https://arxiv.org/abs/1611.05112. 10.4171/CMH/443Suche in Google Scholar

[11] M. Deraux, J. R. Parker and J. Paupert, Census for the complex hyperbolic sporadic triangle groups, Exp. Math. 20 (2011), 467–486. 10.1080/10586458.2011.565262Suche in Google Scholar

[12] M. Deraux, J. R. Parker and J. Paupert, New non-arithmetic complex hyperbolic lattices, Invent. Math. 203 (2016), 681–771. 10.1007/s00222-015-0600-1Suche in Google Scholar

[13] M. Deraux, J. R. Parker and J. Paupert, On commensurability classes of non-arithmetic complex hyberbolic lattices, preprint (2016), https://arxiv.org/abs/1611.00330. Suche in Google Scholar

[14] V. Emery and M. Stover, Covolumes of nonuniform lattices in PU(n,1), Amer. J. Math. 136 (2014), 143–164. 10.1353/ajm.2014.0007Suche in Google Scholar

[15] W. Fulton, Introduction to toric varieties, Princeton University Press, Princeton 1993. 10.1515/9781400882526Suche in Google Scholar

[16] P. Gordan, Typische Darstellung der ternären biquadratischen Form f=x13x2+x23x3+x33x1, Math. Ann. 17 (1880), 359–379. 10.1007/BF01446233Suche in Google Scholar

[17] F. Klein, Über die Transformation siebenter Ordnung der elliptischen Funktionen, Math. Ann. 14 (1879), 428–471. 10.1007/978-3-642-61949-6_5Suche in Google Scholar

[18] R. Kobayashi, Uniformization of complex surfaces, Kähler metric and moduli spaces, Adv. Stud. Pure Math. 18 Part 2, Academic Press, Tokyo (1990), 313–394. 10.1016/B978-0-12-001011-0.50014-2Suche in Google Scholar

[19] R. Kobayashi, S. Nakamura and F. Sakai, A numerical characterization of ball quotients for normal surfaces with branch loci, Proc. Japan Acad. Ser. A 65 (1989), no. 7, 238–241. 10.3792/pjaa.65.238Suche in Google Scholar

[20] J. Kollár and S. Mori, Birational geometry of algebraic varieties. With the collaboration of C. H. Clemens and A. Corti. Paperback reprint of the hardback edition 1998, Cambridge University Press, Cambridge 2008. 10.1017/CBO9780511662560Suche in Google Scholar

[21] C. T. McMullen, The Gauss–Bonnet theorem for cone manifolds and volumes of moduli spaces, preprint (2013). 10.1353/ajm.2017.0005Suche in Google Scholar

[22] G. D. Mostow, On a remarkable class of polyhedra in complex hyperbolic space, Pacific J. Math. 86 (1980), 171–276. 10.2140/pjm.1980.86.171Suche in Google Scholar

[23] G. D. Mostow, Generalized Picard lattices arising from half-integral conditions, Publ. Math. Inst. Hautes Études Sci. 63 (1986), 91–106. 10.1007/BF02831623Suche in Google Scholar

[24] I. Naruki, The fundamental group of the complement for Klein’s arrangement of twenty-one lines, Topology Appl. 34 (1990), no. 2, 167–181. 10.1016/0166-8641(90)90079-HSuche in Google Scholar

[25] J. R. Parker and J. Paupert, Unfaithful complex hyperbolic triangle groups II: Higher order reflections, Pacific J. Math. 239 (2009), 357–389. 10.2140/pjm.2009.239.357Suche in Google Scholar

[26] I. Satake, The Gauss–Bonnet theorem for V-manifolds, J. Math. Soc. Japan 9 (1957), 464–492. 10.2969/jmsj/00940464Suche in Google Scholar

[27] G. C. Shephard and J. A. Todd, Finite unitary reflection groups, Canad. J. Math. 6 (1954), 274–304. 10.4153/CJM-1954-028-3Suche in Google Scholar

[28] T. A. Springer, Invariant theory, Lecture Notes in Math. 585, Springer, Berlin 1977. 10.1007/BFb0095644Suche in Google Scholar

[29] P. Tretkoff, Complex ball quotients and line arrangements in the projective plane, Math. Notes (Princeton) 51, Princeton University Press, Princeton 2016. 10.1515/9781400881253Suche in Google Scholar

[30] H. Weber, Lehrbuch der Algebra II, Vieweg & Sohn, Braunschweig 1899. Suche in Google Scholar

[31] M. Yoshida, Orbifold-uniformizing differential equations III: Arrangements defined by 3-dimensional primitive unitary reflection groups, Math. Ann. 274 (1986), 319–334. 10.1007/BF01457077Suche in Google Scholar

Received: 2016-07-17
Revised: 2017-01-19
Published Online: 2017-03-09
Published in Print: 2019-09-01

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 20.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/crelle-2017-0005/html?lang=de
Button zum nach oben scrollen