Abstract
We construct Galois covers
Acknowledgements
I am grateful to Alp Bassa for pointing out the leading idea of [3], and to him as well as to Andreas Schweizer and Mihran Papikian for instructive conversations and communication about related topics. Thanks are also due to Gunter Malle for his hint to the paper [26].
References
[1] G. W. Anderson, t-motives, Duke Math. J. 53 (1986), no. 2, 457–502. 10.1215/S0012-7094-86-05328-7Search in Google Scholar
[2] A. Bassa, Talk at the conference the arithmetic of function fields (Busan 2013). Search in Google Scholar
[3] A. Bassa, P. Beelen, A. Garcia and H. Stichtenoth, Towers of function fields over non-prime finite fields, Mosc. Math. J. 15 (2015), no. 1, 1–29, 181 10.17323/1609-4514-2015-15-1-1-29Search in Google Scholar
[4] S. Bosch, U. Güntzer and R. Remmert, Non-Archimedean analysis. A systematic approach to rigid analytic geometry, Grundlehren Math. Wiss. 261, Springer, Berlin 1984. 10.1007/978-3-642-52229-1Search in Google Scholar
[5] P. Deligne and D. Husemoller, Survey of Drinfel’d modules, Current trends in arithmetical algebraic geometry (Arcata 1985), Contemp. Math. 67, American Mathematical Society, Providence (1987), 25–91. 10.1090/conm/067/902591Search in Google Scholar
[6] P. Deligne and M. Rapoport, Les schémas de modules de courbes elliptiques, Modular functions of one variable. II (Antwerp 1972), Lecture Notes in Math. 349, Springer, Berlin (1973), 143–316. 10.1007/978-3-540-37855-6_4Search in Google Scholar
[7] V. G. Drinfel’d, Elliptic modules (Russian), Mat. Sb. (N.S.) 94(136) (1974), 594–627, 656. 10.1070/SM1974v023n04ABEH001731Search in Google Scholar
[8] J. Fresnel and M. van der Put, Rigid analytic geometry and its applications, Progr. Math. 218, Birkhäuser, Boston 2004. 10.1007/978-1-4612-0041-3Search in Google Scholar
[9] E.-U. Gekeler, Drinfel’d-Moduln und modulare Formen über rationalen Funktionenkörpern, Bonn. Math. Schr. 119 (1980), 1–142. Search in Google Scholar
[10] E.-U. Gekeler, Modulare Einheiten für Funktionenkörper, J. reine angew. Math. 348 (1984), 94–115. 10.1515/crll.1984.348.94Search in Google Scholar
[11] E.-U. Gekeler, Drinfeld modular curves, Lecture Notes in Math. 1231, Springer, Berlin 1986. 10.1007/BFb0072692Search in Google Scholar
[12] E.-U. Gekeler, Über Drinfeldsche Modulkurven vom Hecke-Typ, Compos. Math. 57 (1986), no. 2, 219–236. Search in Google Scholar
[13] E.-U. Gekeler, On the coefficients of Drinfeld modular forms, Invent. Math. 93 (1988), no. 3, 667–700. 10.1007/BF01410204Search in Google Scholar
[14] E.-U. Gekeler, On finite Drinfeld modules, J. Algebra 141 (1991), no. 1, 187–203. 10.1016/0021-8693(91)90211-PSearch in Google Scholar
[15] E.-U. Gekeler, Finite modular forms, Finite Fields Appl. 7 (2001), no. 4, 553–572. 10.1006/ffta.2000.0314Search in Google Scholar
[16] E.-U. Gekeler, Invariants of some algebraic curves related to Drinfeld modular curves, J. Number Theory 90 (2001), no. 1, 166–183. 10.1006/jnth.2000.2642Search in Google Scholar
[17] E.-U. Gekeler and U. Nonnengardt, Fundamental domains of some arithmetic groups over function fields, Internat. J. Math. 6 (1995), no. 5, 689–708. 10.1142/S0129167X95000286Search in Google Scholar
[18] E.-U. Gekeler and M. Reversat, Jacobians of Drinfeld modular curves, J. reine angew. Math. 476 (1996), 27–93. 10.1515/crll.1996.476.27Search in Google Scholar
[19] L. Gerritzen and M. van der Put, Schottky groups and Mumford curves, Lecture Notes in Math. 817, Springer, Berlin 1980. 10.1007/BFb0089957Search in Google Scholar
[20]
D. Goss,
Modular forms for
[21] D. Goss, π-adic Eisenstein series for function fields, Compos. Math. 41 (1980), no. 1, 3–38. Search in Google Scholar
[22] D. Goss, Basic structures of function field arithmetic, Ergeb. Math. Grenzgeb. (3) 35, Springer, Berlin 1996. 10.1007/978-3-642-61480-4Search in Google Scholar
[23] R. Hartshorne, Algebraic geometry, Grad. Texts in Math. 52, Springer, New York 1977. 10.1007/978-1-4757-3849-0Search in Google Scholar
[24] D. R. Hayes, Explicit class field theory for rational function fields, Trans. Amer. Math. Soc. 189 (1974), 77–91. 10.1090/S0002-9947-1974-0330106-6Search in Google Scholar
[25] Y. Ihara, Some remarks on the number of rational points of algebraic curves over finite fields, J. Fac. Sci. Univ. Tokyo Sect. I A Math. 28 (1981), no. 3, 721–724. Search in Google Scholar
[26] W. M. Kantor, Linear groups containing a Singer cycle, J. Algebra 62 (1980), no. 1, 232–234. 10.1016/0021-8693(80)90214-8Search in Google Scholar
[27] R. Kiehl, Der Endlichkeitssatz für eigentliche Abbildungen in der nichtarchimedischen Funktionentheorie, Invent. Math. 2 (1967), 191–214. 10.1007/BF01425513Search in Google Scholar
[28] R. Kiehl, Theorem A und Theorem B in der nichtarchimedischen Funktionentheorie, Invent. Math. 2 (1967), 256–273. 10.1007/BF01425404Search in Google Scholar
[29] J. Neukirch, Algebraic number theory, Grundlehren Math. Wiss. 322, Springer, Berlin 1999. 10.1007/978-3-662-03983-0Search in Google Scholar
[30] R. Pink, Compactification of Drinfeld modular varieties and Drinfeld modular forms of arbitrary rank, Manuscripta Math. 140 (2013), no. 3–4, 333–361. 10.1007/s00229-012-0544-3Search in Google Scholar
[31] R. Pink and S. Schieder, Compactification of a Drinfeld period domain over a finite field, J. Algebraic Geom. 23 (2014), no. 2, 201–243. 10.1090/S1056-3911-2013-00605-0Search in Google Scholar
[32] P. Schneider and U. Stuhler, The cohomology of p-adic symmetric spaces, Invent. Math. 105 (1991), no. 1, 47–122. 10.1007/BF01232257Search in Google Scholar
[33] J.-P. Serre, Géométrie algébrique et géométrie analytique, Ann. Inst. Fourier (Grenoble) 6 (1955/1956), 1–42. 10.1007/978-3-642-39816-2_32Search in Google Scholar
[34] J.-P. Serre, Corps locaux, Act. Sci. Indust. 1296, Hermann & Cie, Paris 1962. Search in Google Scholar
[35] Y. Taguchi, Semi-simplicity of the Galois representations attached to Drinfel’d modules over fields of “infinite characteristics”, J. Number Theory 44 (1993), no. 3, 292–314. 10.1006/jnth.1993.1055Search in Google Scholar
[36] M. A. Tsfasman and S. G. Vlǎduţ, Algebraic-geometric codes, Math. Appl. (Soviet Series) 58, Kluwer Academic Publishers, Dordrecht 1991. 10.1007/978-94-011-3810-9Search in Google Scholar
[37] M. A. Tsfasman, S. G. Vlǎduţ and T. Zink, Modular curves, Shimura curves, and Goppa codes, better than Varshamov–Gilbert bound, Math. Nachr. 109 (1982), 21–28. 10.1002/mana.19821090103Search in Google Scholar
[38] G. van der Geer and M. van der Vlugt, Tables of curves with many points, Math. Comp. 69 (2000), no. 230, 797–810. 10.1090/S0025-5718-99-01143-6Search in Google Scholar
© 2019 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- 𝒟-modules arithmétiques sur la variété de drapeaux
- Nodal length of Steklov eigenfunctions on real-analytic Riemannian surfaces
- Kazhdan projections, random walks and ergodic theorems
- Towers of GL($r$)-type of modular curves
- Donaldson–Thomas invariants versus intersection cohomology of quiver moduli
- Volterra operators on Hardy spaces of Dirichlet series
- Mean curvature flow of noncompact hypersurfaces with Type-II curvature blow-up
- Non-arithmetic lattices and the Klein quartic
- Splitting theorems for Poisson and related structures
Articles in the same Issue
- Frontmatter
- 𝒟-modules arithmétiques sur la variété de drapeaux
- Nodal length of Steklov eigenfunctions on real-analytic Riemannian surfaces
- Kazhdan projections, random walks and ergodic theorems
- Towers of GL($r$)-type of modular curves
- Donaldson–Thomas invariants versus intersection cohomology of quiver moduli
- Volterra operators on Hardy spaces of Dirichlet series
- Mean curvature flow of noncompact hypersurfaces with Type-II curvature blow-up
- Non-arithmetic lattices and the Klein quartic
- Splitting theorems for Poisson and related structures