Abstract
Soient p un nombre premier,
V un anneau de valuation discrète complet d’inégales caractéristiques
Let p be a prime number, V a complete discrete valuation ring of unequal characteristics
Acknowledgements
Le premier auteur remercie Michel Gros, King Fai Lai et Adriano Marmora pour leurs encouragements à rédiger ce travail, ainsi que Pierre Berthelot pour ses réponses à nos questions. Le second auteur a accompli une partie de ce travail alors qu’il était lauréat d’une bourse Heisenberg attribuée par la Deutsche Forschungsgemeinschaft. Il tient à remercier cette institution pour son soutien.
References
[1] K. Ardakov and S. Wadsley, On irreducible representations of compact p-adic analytic groups, Ann. of Math. (2) 178 (2013), no. 2, 453–557. 10.4007/annals.2013.178.2.3Search in Google Scholar
[2] A. Beilinson, Localization of representations of reductive Lie algebras, Proceedings of the international congress of mathematicians. Vol. 1 (Warsaw 1983), PWN-Polish Scientific, Warsaw (1984), 699–710. Search in Google Scholar
[3]
A. Beilinson and J. Bernstein,
Localisation de
[4]
P. Berthelot,
Cohomologie rigide et théorie des
[5] P. Berthelot, Cohérence différentielle des algèbres de fonctions surconvergentes, C. R. Acad. Sci. Paris Sér. I 323 (1996), no. 1, 35–40. Search in Google Scholar
[6]
P. Berthelot,
[7]
P. Berthelot,
[8] C. Breuil, The emerging p-adic Langlands programme, Proceedings of the international congress of mathematicians. Volume II: Invited lectures (Hyderabad 2010), World Scientific, Hackensack (2011), 203–230. 10.1142/9789814324359_0047Search in Google Scholar
[9] A. J. de Jong, Crystalline Dieudonné module theory via formal and rigid geometry, Publ. Math. Inst. Hautes Études Sci. 82 (1995), 5–96. 10.1007/BF02698637Search in Google Scholar
[10] M. Demazure and P. Gabriel, Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs, Masson & Cie, Paris 1970. Search in Google Scholar
[11] M. Emerton, Locally analytic vectors in representations of locally p-adic analytic groups, Mem. Amer. Math. Soc., to appear. 10.1090/memo/1175Search in Google Scholar
[12] A. Grothendieck, Éléments de géométrie algébrique. I. Le langage des schémas, Publ. Math. Inst. Hautes Études Sci. 4 (1960), 1–228. 10.1007/BF02684778Search in Google Scholar
[13] A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas IV, Publ. Math. Inst. Hautes Études Sci. 32 (1967), 1–361. 10.1007/BF02732123Search in Google Scholar
[14] G. Hochschild, Cohomology of restricted Lie algebras, Amer. J. Math. 76 (1954), 555–580. 10.2307/2372701Search in Google Scholar
[15]
C. Huyghe,
[16]
C. Huyghe and T. Schmidt,
Algèbres de distributions et
[17] J. C. Jantzen, Restricted Lie algebra cohomology, Algebraic groups (Utrecht 1986), Lecture Notes in Math. 1271, Springer, Berlin (1987), 91–108. 10.1007/BFb0079234Search in Google Scholar
[18] C. Noot-Huyghe, Un théorème de Beilinson–Bernstein pour les D-modules arithmétiques, Bull. Soc. Math. France 137 (2009), no. 2, 159–183. 10.24033/bsmf.2572Search in Google Scholar
[19]
D. Patel, T. Schmidt and M. Strauch,
Integral models of
[20]
D. Patel, T. Schmidt and M. Strauch,
Locally analytic representations of
[21] W. Schmid, Geometric methods in representation theory, Poisson geometry, deformation quantisation and group representations, London Math. Soc. Lecture Note Ser. 323, Cambridge University, Cambridge (2005), 273–323. Search in Google Scholar
[22] P. Schneider and J. Teitelbaum, Algebras of p-adic distributions and admissible representations, Invent. Math. 153 (2003), 145–196. 10.1007/s00222-002-0284-1Search in Google Scholar
[23] S. A. Sikko and S. O. Smalø, Coherent rings and homologically finite subcategories, Math. Scand. 77 (1995), 175–183. 10.7146/math.scand.a-12558Search in Google Scholar
© 2019 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- 𝒟-modules arithmétiques sur la variété de drapeaux
- Nodal length of Steklov eigenfunctions on real-analytic Riemannian surfaces
- Kazhdan projections, random walks and ergodic theorems
- Towers of GL($r$)-type of modular curves
- Donaldson–Thomas invariants versus intersection cohomology of quiver moduli
- Volterra operators on Hardy spaces of Dirichlet series
- Mean curvature flow of noncompact hypersurfaces with Type-II curvature blow-up
- Non-arithmetic lattices and the Klein quartic
- Splitting theorems for Poisson and related structures
Articles in the same Issue
- Frontmatter
- 𝒟-modules arithmétiques sur la variété de drapeaux
- Nodal length of Steklov eigenfunctions on real-analytic Riemannian surfaces
- Kazhdan projections, random walks and ergodic theorems
- Towers of GL($r$)-type of modular curves
- Donaldson–Thomas invariants versus intersection cohomology of quiver moduli
- Volterra operators on Hardy spaces of Dirichlet series
- Mean curvature flow of noncompact hypersurfaces with Type-II curvature blow-up
- Non-arithmetic lattices and the Klein quartic
- Splitting theorems for Poisson and related structures