Startseite A Numerical Study of a Stabilized Hyperbolic Equation Inspired by Models for Bio-Polymerization
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A Numerical Study of a Stabilized Hyperbolic Equation Inspired by Models for Bio-Polymerization

  • Lisa Davis , Monika Neda , Faranak Pahlevani , Jorge Reyes ORCID logo EMAIL logo und Jiajia Waters
Veröffentlicht/Copyright: 26. März 2024

Abstract

This report investigates a stabilization method for first order hyperbolic differential equations applied to DNA transcription modeling. It is known that the usual unstabilized finite element method contains spurious oscillations for nonsmooth solutions. To stabilize the finite element method the authors consider adding to the first order hyperbolic differential system a stabilization term in space and time filtering. Numerical analysis of the stabilized finite element algorithms and computations describing a few biological settings are studied herein.

Award Identifier / Grant number: DMS-1951510

Award Identifier / Grant number: DMS-1951563

Funding statement: The contribution of the authors Dr. Davis and Dr. Pahlevani was supported by the National Science Foundation under Awards DMS-1951510 and DMS-1951563.

References

[1] J. Ahrens, B. Geveci, C. Law, C. Hansen and C. Johnson, Paraview: An end-user tool for large-data visualization, Visualization Handb. (2005), 717–731. 10.1016/B978-012387582-2/50038-1Suche in Google Scholar

[2] N. Bellomo, M. Delitala and V. Coscia, On the mathematical theory of vehicular traffic flow. I. Fluid dynamic and kinetic modelling, Math. Models Methods Appl. Sci. 12 (2002), no. 12, 1801–1843. 10.1142/S0218202502002343Suche in Google Scholar

[3] L. C. Berselli, T. Iliescu and W. J. Layton, Mathematics of Large Eddy Simulation of Turbulent Flows, Sci. Comput., Springer, Berlin, 2006. Suche in Google Scholar

[4] K. Boatman, L. Davis, F. Pahlevani and T. S. Rajan, Numerical analysis of a time filtered scheme for a linear hyperbolic equation inspired by DNA transcription modeling, J. Comput. Appl. Math. 429 (2023), Article ID 115135. 10.1016/j.cam.2023.115135Suche in Google Scholar

[5] F. Bouchut, Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws and Well-Balanced Schemes For Sources, Front. Math., Birkhäuser, Basel, 2004. 10.1007/b93802Suche in Google Scholar

[6] C. A. Brackley, M. C. Romano, M. Thiel, Slow sites in an exclusion process with limited resources, Phys. Rev. E 82 (2010), Article ID 051920. 10.1103/PhysRevE.82.051920Suche in Google Scholar PubMed

[7] A. Brooks and T. Hughes, Streamline-upwind/Petrov–Galerkin methods for advection dominated flows, Comput. Methods Appl. Mech. Engrg. 32 (1980), no. 1–3, 199–259. 10.1016/0045-7825(82)90071-8Suche in Google Scholar

[8] G. F. Carey, An analysis of stability And Oscillations In Convection-Diffusion Computations, Finite element methods for Convection Dominated Flows, ASME, New York (1979), 63–71. Suche in Google Scholar

[9] L. Ciandrini, I. Stansfield and M. C. Romano, Role of the particle’s stepping cycle in an asymmetric exclusion process: Model of mRNA translation, Phys. Rev. E 81 (2010), Article ID 051904. 10.1103/PhysRevE.81.051904Suche in Google Scholar PubMed PubMed Central

[10] J. Connors and W. Layton, On the accuracy of the finite element method plus time relaxation, Math. Comp. 79 (2010), no. 270, 619–648. 10.1090/S0025-5718-09-02316-3Suche in Google Scholar

[11] L. Davis, T. Gedeon, J. Gedeon and J. Thorenson, A traffic flow model for bio-polymerization processes, J. Math. Biol. 68 (2014), no. 3, 667–700. 10.1007/s00285-013-0651-0Suche in Google Scholar PubMed PubMed Central

[12] L. Davis, T. Gedeon and J. Thorenson, Discontinuous Galerkin calculations for a nonlinear PDE model of DNA transcription with short, transient and frequent pausing, J. Comput. Math. 32 (2014), no. 6, 601–629. 10.4208/jcm.1405-m4370Suche in Google Scholar

[13] L. Davis, F. Pahlevani and T. S. Rajan, An accurate and stable filtered explicit scheme for biopolymerization processes in thepresence of perturbations, Appl. Comput. Math. 10 (2021), no. 6, 121–137. 10.11648/j.acm.20211006.11Suche in Google Scholar

[14] V. DeCaria, S. Gottlieb, Z. J. Grant and W. J. Layton, A general linear method approach to the design and optimization of efficient, accurate, and easily implemented time-stepping methods in CFD, J. Comput. Phys. 455 (2022), Article ID 110927. 10.1016/j.jcp.2021.110927Suche in Google Scholar

[15] V. DeCaria, W. Layton and H. Zhao, A time-accurate, adaptive discretization for fluid flow problems, Int. J. Numer. Anal. Model. 17 (2020), no. 2, 254–280. Suche in Google Scholar

[16] P. P. Dennis, M. Ehrenberg, D. Fange and H. Bremer, Varying rate of RNA chain elongation during rrn transcription in Escherichia coli, J. Bacteriology 191 (2009), no. 11, 3740–3746. 10.1128/JB.00128-09Suche in Google Scholar PubMed PubMed Central

[17] A. Dunca and Y. Epshteyn, On the Stolz–Adams deconvolution model for the large-eddy simulation of turbulent flows, SIAM J. Math. Anal. 37 (2006), no. 6, 1890–1902. 10.1137/S0036141003436302Suche in Google Scholar

[18] A. A. Dunca and M. Neda, On the Vreman filter based stabilization for the advection equation, Appl. Math. Comput. 269 (2015), 379–388. 10.1016/j.amc.2015.07.083Suche in Google Scholar

[19] T. Dupont, Galerkin methods for first order hyperbolics: an example, SIAM J. Numer. Anal. 10 (1973), 890–899. 10.1137/0710074Suche in Google Scholar

[20] B. D. Greenshields, A study of traffic capacity, Highway Res. Board 14 (1935), 448–477. Suche in Google Scholar

[21] V. J. Ervin and E. W. Jenkins, Stabilized approximation to degenerate transport equations via filtering, Appl. Math. Comput. 217 (2011), no. 17, 7282–7294. 10.1016/j.amc.2011.02.020Suche in Google Scholar

[22] M. Germano, Differential filters of elliptic type, Phys. Fluids 29 (1986), no. 6, 1757–1758. 10.1063/1.865650Suche in Google Scholar

[23] J.-L. Guermond, Stabilization of Galerkin approximations of transport equations by subgrid modeling, M2AN Math. Model. Numer. Anal. 33 (1999), no. 6, 1293–1316. 10.1051/m2an:1999145Suche in Google Scholar

[24] J.-L. Guermond, Subgrid stabilization of Galerkin approximations of linear monotone operators, IMA J. Numer. Anal. 21 (2001), no. 1, 165–197. 10.1093/imanum/21.1.165Suche in Google Scholar

[25] A. Guzel and W. Layton, Time filters increase accuracy of the fully implicit method, BIT 58 (2018), no. 2, 301–315. 10.1007/s10543-018-0695-zSuche in Google Scholar

[26] F. Hecht, New development in freefem++, J. Numer. Math. 20 (2012), no. 3–4, 251–265. 10.1515/jnum-2012-0013Suche in Google Scholar

[27] R. Heinrich and T. A. Rapoport, Mathematical modelling of translation of mrna in eucaryotes: Steady states, time-dependent processes and application to reticulocytes, J. Theor. Biol. 86 (1980), 279–313. 10.1016/0022-5193(80)90008-9Suche in Google Scholar PubMed

[28] V. John and P. Knobloch, On spurious oscillations at layers diminishing (SOLD) methods for convection-diffusion equations. I. A review, Comput. Methods Appl. Mech. Engrg. 196 (2007), no. 17–20, 2197–2215. 10.1016/j.cma.2006.11.013Suche in Google Scholar

[29] S. Kang and Y. H. Kwon, A nonlinear Galerkin method for the Burgers equation, Commun. Korean Math. Soc. 12 (1997), no. 2, 467–478. Suche in Google Scholar

[30] B. L. Keyfitz and M. Shearer, Nonlinear Evolution Equations that Change Type, Springer, New York, 1990. 10.1007/978-1-4613-9049-7Suche in Google Scholar

[31] S. Klumpp, Pausing and backtracking in transcription under dense traffic conditions, J. Stat. Phys. 142 (2011), 1251–1267. 10.1007/s10955-011-0120-3Suche in Google Scholar

[32] W. Layton, C. C. Manica, M. Neda and L. G. Rebholz, Numerical analysis and computational testing of a high accuracy Leray-deconvolution model of turbulence, Numer. Methods Partial Differential Equations 24 (2008), no. 2, 555–582. 10.1002/num.20281Suche in Google Scholar

[33] W. J. Layton, C. C. Manica, M. Neda and L. G. Rebholz, Helicity and energy conservation and dissipation in approximate deconvolution LES models of turbulence, Adv. Appl. Fluid Mech. 4 (2008), no. 1, 1–46. Suche in Google Scholar

[34] W. J. Layton and L. G. Rebholz, Approximate Deconvolution Models of Turbulence, Lecture Notes in Math. 2042, Springer, Heidelberg, 2012. 10.1007/978-3-642-24409-4Suche in Google Scholar

[35] R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge Texts Appl. Math., Cambridge University, Cambridge, 2002. 10.1017/CBO9780511791253Suche in Google Scholar

[36] C. T. MacDonald and J. H. Gibbs, Concerning the kinetics of polypeptide synthesis on polyribosomes, Biopolymers 7 (1969), 707–725. 10.1002/bip.1969.360070508Suche in Google Scholar

[37] C. T. MacDonald, J. H. Gibbs and A. C. Pipkin, Kinetics of biopolymerization on nucleic acid templates, Biopolymers 6 (1968), 1–25. 10.1002/bip.1968.360060102Suche in Google Scholar PubMed

[38] C. C. Manica and S. K. Merdan, Finite element error analysis of a zeroth order approximate deconvolution model based on a mixed formulation, J. Math. Anal. Appl. 331 (2007), no. 1, 669–685. 10.1016/j.jmaa.2006.08.083Suche in Google Scholar

[39] L. Mier-y Terán-Romero, M. Silber and V. Hatzimanikatis, The origins of time-delay in template biopolymerization processes, PLoS Comput. Biol. 6 (2010), no. 4, Article ID e1000726. 10.1371/journal.pcbi.1000726Suche in Google Scholar PubMed PubMed Central

[40] K. W. Morton and D. F. Mayers, Numerical Solution of Partial Differential Equations, 2nd ed., Cambridge University, Cambridge, 2005. 10.1017/CBO9780511812248Suche in Google Scholar

[41] L. B. Shaw, R. K. Z. Zia and K. H. Lee, Totally asymmetric exclusion process with extended objects: A model for protein synthesis, Phys. Rev. E 68 (2003), Article ID 021910. 10.1103/PhysRevE.68.021910Suche in Google Scholar PubMed

[42] J. Shen and R. Temam, Nonlinear Galerkin method using Chebyshev and Legendre polynomials. I. The one-dimensional case, SIAM J. Numer. Anal. 32 (1995), no. 1, 215–234. 10.1137/0732007Suche in Google Scholar

[43] F. Spitzer, Interaction of Markov processes, Adv. Math. 5 (1970), 246–290. 10.1016/0001-8708(70)90034-4Suche in Google Scholar

[44] J. C. Strikwerda, Finite Difference Schemes and Partial Differential Equations, 2nd ed., Society for Industrial and Applied Mathematics, Philadelphia, 2004. 10.1137/1.9780898717938Suche in Google Scholar

[45] V. Thomée and B. Wendroff, Convergence estimates for Galerkin methods for variable coefficient initial value problems, SIAM J. Numer. Anal. 11 (1974), 1059–1068. 10.1137/0711081Suche in Google Scholar

[46] A. W. Vreman, The filtering analog of the variational multiscale method in large-eddy simulation, Phys. Fluids 15 (2003), no. 8, L61–L64. 10.1063/1.1595102Suche in Google Scholar

[47] R. K. P. Zia, J. J. Dong and B. Schmittmann, Modeling translation in protein synthesis with TASEP: A tutorial and recent developments, J. Stat. Phys. 144 (2011), no. 2, 405–428. 10.1007/s10955-011-0183-1Suche in Google Scholar

Received: 2023-10-10
Revised: 2024-02-23
Accepted: 2024-03-12
Published Online: 2024-03-26
Published in Print: 2025-01-01

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 21.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/cmam-2023-0222/html?lang=de
Button zum nach oben scrollen