Home Quadratic Discontinuous Galerkin Finite Element Methods for the Unilateral Contact Problem
Article
Licensed
Unlicensed Requires Authentication

Quadratic Discontinuous Galerkin Finite Element Methods for the Unilateral Contact Problem

  • Kamana Porwal ORCID logo EMAIL logo and Tanvi Wadhawan
Published/Copyright: April 24, 2024

Abstract

In this article, we employ discontinuous Galerkin methods for the finite element approximation of the frictionless unilateral contact problem using quadratic finite elements over simplicial triangulation. We first develop a posteriori error estimates in the energy norm wherein, the reliability and efficiency of the proposed a posteriori error estimator is addressed. The suitable construction of the discrete Lagrange multiplier 𝝀 𝒉 and some intermediate operators play a key role in developing a posteriori error analysis. Further, we establish an optimal a priori error estimates under the appropriate regularity assumption on the exact solution 𝒖 . Numerical results presented on uniform and adaptive meshes illustrate and confirm the theoretical findings.

MSC 2020: 65N30; 65N15

Funding statement: The second author’s work is supported by CSIR Extramural Research Grant (25(0297)/19/EMR-II).

References

[1] M. B. Abd-el Malek, Flow in a waterfall with large Froude number, J. Comput. Appl. Math. 50 (1994), 87–98. 10.1016/0377-0427(94)90291-7Search in Google Scholar

[2] M. Ainsworth and J. T. Oden, A Posteriori Error Estimation in Finite Element Analysis, Pure Appl. Math. (New York), Wiley-Interscience, New York, 2000. 10.1002/9781118032824Search in Google Scholar

[3] D. N. Arnold, An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal. 19 (1982), no. 4, 742–760. 10.1137/0719052Search in Google Scholar

[4] D. N. Arnold, F. Brezzi, B. Cockburn and L. D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal. 39 (2001/02), no. 5, 1749–1779. 10.1137/S0036142901384162Search in Google Scholar

[5] K. Atkinson and W. Han, Theoretical Numerical Analysis. A Functional Analysis Framework, 3rd ed., Texts Appl. Math. 39, Springer, Dordrecht, 2009. Search in Google Scholar

[6] L. Banz and A. Schröder, Biorthogonal basis functions in hp-adaptive FEM for elliptic obstacle problems, Comput. Math. Appl. 70 (2015), no. 8, 1721–1742. 10.1016/j.camwa.2015.07.010Search in Google Scholar

[7] L. Banz and E. P. Stephan, A posteriori error estimates of hp-adaptive IPDG-FEM for elliptic obstacle problems, Appl. Numer. Math. 76 (2014), 76–92. 10.1016/j.apnum.2013.10.004Search in Google Scholar

[8] S. Bartels and C. Carstensen, Averaging techniques yield reliable a posteriori finite element error control for obstacle problems, Numer. Math. 99 (2004), no. 2, 225–249. 10.1007/s00211-004-0553-6Search in Google Scholar

[9] F. Bassi, S. Rebay, G. Mariotti, S. Pedinotti and M. Savini, A high-order accurate discontinuous finite element method for inviscid and viscous turbomachinery flows, Proceedings of 2nd European Conference on Turbomachinery, Fluid Dynamics and Thermodynamics, Technologisch Instituut, Antwerpen (1997), 99–108. Search in Google Scholar

[10] Z. Belhachmi and F. B. Belgacem, Quadratic finite element approximation of the Signorini problem, Math. Comp. 72 (2003), no. 241, 83–104. 10.1090/S0025-5718-01-01413-2Search in Google Scholar

[11] R. E. Bird, W. M. Coombs and S. Giani, A posteriori discontinuous Galerkin error estimator for linear elasticity, Appl. Math. Comput. 344/345 (2019), 78–96. 10.1016/j.amc.2018.08.039Search in Google Scholar

[12] V. Bostan and W. Han, A posteriori error analysis for finite element solutions of a frictional contact problem, Comput. Methods Appl. Mech. Engrg. 195 (2006), no. 9–12, 1252–1274. 10.1016/j.cma.2005.06.003Search in Google Scholar

[13] S. C. Brenner, Poincaré–Friedrichs inequalities for piecewise H 1 functions, SIAM J. Numer. Anal. 41 (2003), no. 1, 306–324. 10.1137/S0036142902401311Search in Google Scholar

[14] S. C. Brenner, Korn’s inequalities for piecewise H 1 vector fields, Math. Comp. 73 (2004), no. 247, 1067–1087. 10.1090/S0025-5718-03-01579-5Search in Google Scholar

[15] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, 3rd ed., Texts Appl. Math. 15, Springer, New York, 2008. 10.1007/978-0-387-75934-0Search in Google Scholar

[16] S. C. Brenner, L.-Y. Sung and Y. Zhang, Finite element methods for the displacement obstacle problem of clamped plates, Math. Comp. 81 (2012), no. 279, 1247–1262. 10.1090/S0025-5718-2012-02602-0Search in Google Scholar

[17] F. Brezzi, W. W. Hager and P.-A. Raviart, Error estimates for the finite element solution of variational inequalities, Numer. Math. 28 (1977), no. 4, 431–443. 10.1007/BF01404345Search in Google Scholar

[18] F. Brezzi, G. Manzini, D. Marini, P. Pietra and A. Russo, Discontinuous Galerkin approximations for elliptic problems, Numer. Methods Partial Differential Equations 16 (2000), no. 4, 365–378. 10.1002/1098-2426(200007)16:4<365::AID-NUM2>3.0.CO;2-YSearch in Google Scholar

[19] R. Bustinza and F.-J. Sayas, Error estimates for an LDG method applied to Signorini type problems, J. Sci. Comput. 52 (2012), no. 2, 322–339. 10.1007/s10915-011-9548-5Search in Google Scholar

[20] P. Castillo, B. Cockburn, I. Perugia and D. Schötzau, An a priori error analysis of the local discontinuous Galerkin method for elliptic problems, SIAM J. Numer. Anal. 38 (2000), no. 5, 1676–1706. 10.1137/S0036142900371003Search in Google Scholar

[21] Y. Chen, J. Huang, X. Huang and Y. Xu, On the local discontinuous Galerkin method for linear elasticity, Math. Probl. Eng. 19 (2010), Article ID 759547. 10.1155/2010/759547Search in Google Scholar

[22] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, Stud. Math. Appl. 4, North-Holland, Amsterdam, 1978. 10.1115/1.3424474Search in Google Scholar

[23] B. Cockburn, G. E. Karniadakis and C.-W. Shu, Discontinuous Galerkin Methods. Theory, Computation and Applications, Lect. Notes Comput. Sci. Eng. 11, Springer, Berlin, 2000. 10.1007/978-3-642-59721-3Search in Google Scholar

[24] D. A. Di Pietro and A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods, Math. Appl. (Berlin) 69, Springer, Heidelberg, 2012. 10.1007/978-3-642-22980-0Search in Google Scholar

[25] W. Dörfler, A convergent adaptive algorithm for Poisson’s equation, SIAM J. Numer. Anal. 33 (1996), no. 3, 1106–1124. 10.1137/0733054Search in Google Scholar

[26] G. Duvaut and J.-L. Lions, Inequalities in Mechanics and Physics, Grundlehren Math. Wiss. 219, Springer, Berlin, 1976. 10.1007/978-3-642-66165-5Search in Google Scholar

[27] R. S. Falk, Error estimates for the approximation of a class of variational inequalities, Math. Comp. 28 (1974), 963–971. 10.1090/S0025-5718-1974-0391502-8Search in Google Scholar

[28] G. Fichera, Problemi elastostatici con vincoli unilaterali: Il problema di Signorini con ambigue condizioni al contorno, Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur. Sez. Ia (8) 7 (1963/64), 91–140. Search in Google Scholar

[29] S. Gaddam and T. Gudi, Bubbles enriched quadratic finite element method for the 3D-elliptic obstacle problem, Comput. Methods Appl. Math. 18 (2018), no. 2, 223–236. 10.1515/cmam-2017-0018Search in Google Scholar

[30] S. Gaddam, T. Gudi and K. Porwal, Two new approaches for solving elliptic obstacle problems using discontinuous Galerkin methods, BIT 62 (2022), no. 1, 89–124. 10.1007/s10543-021-00869-wSearch in Google Scholar

[31] R. Glowinski, Numerical Methods for Nonlinear Variational Problems, Springer, Berlin, 2008. Search in Google Scholar

[32] T. Gudi and K. Porwal, A posteriori error control of discontinuous Galerkin methods for elliptic obstacle problems, Math. Comp. 83 (2014), no. 286, 579–602. 10.1090/S0025-5718-2013-02728-7Search in Google Scholar

[33] T. Gudi and K. Porwal, A remark on the a posteriori error analysis of discontinuous Galerkin methods for the obstacle problem, Comput. Methods Appl. Math. 14 (2014), no. 1, 71–87. 10.1515/cmam-2013-0015Search in Google Scholar

[34] T. Gudi and K. Porwal, A reliable residual based a posteriori error estimator for a quadratic finite element method for the elliptic obstacle problem, Comput. Methods Appl. Math. 15 (2015), no. 2, 145–160. 10.1515/cmam-2015-0005Search in Google Scholar

[35] T. Gudi and K. Porwal, A posteriori error estimates of discontinuous Galerkin methods for the Signorini problem, J. Comput. Appl. Math. 292 (2016), 257–278. 10.1016/j.cam.2015.07.008Search in Google Scholar

[36] J. S. Hesthaven and T. Warburton, Nodal Discontinuous Galerkin Methods. Algorithms, Analysis, and Applications, Texts Appl. Math. 54, Springer, New York, 2008. 10.1007/978-0-387-72067-8Search in Google Scholar

[37] P. Hild and S. Nicaise, A posteriori error estimations of residual type for Signorini’s problem, Numer. Math. 101 (2005), no. 3, 523–549. 10.1007/s00211-005-0630-5Search in Google Scholar

[38] P. Hild and S. Nicaise, Residual a posteriori error estimators for contact problems in elasticity, M2AN Math. Model. Numer. Anal. 41 (2007), no. 5, 897–923. 10.1051/m2an:2007045Search in Google Scholar

[39] S. Hüeber, M. Mair and B. I. Wohlmuth, A priori error estimates and an inexact primal-dual active set strategy for linear and quadratic finite elements applied to multibody contact problems, Appl. Numer. Math. 54 (2005), no. 3–4, 555–576. 10.1016/j.apnum.2004.09.019Search in Google Scholar

[40] R. Khandelwal, K. Porwal and T. Wadhawan, Adaptive quadratic finite element method for the unilateral contact problem, J. Sci. Comput. 96 (2023), no. 1, Paper No. 20. 10.1007/s10915-023-02206-5Search in Google Scholar

[41] N. Kikuchi and J. T. Oden, Contact Problem in Elasticity, Society for Industrial and Applied Mathematics, Philadelphia, 1988. 10.1137/1.9781611970845Search in Google Scholar

[42] D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their Applications, Class. Appl. Math. 31, Society for Industrial and Applied Mathematics, Philadelphia, 2000. 10.1137/1.9780898719451Search in Google Scholar

[43] R. Krause, A. Veeser and M. Walloth, An efficient and reliable residual-type a posteriori error estimator for the Signorini problem, Numer. Math. 130 (2015), no. 1, 151–197. 10.1007/s00211-014-0655-8Search in Google Scholar

[44] R. H. Nochetto, T. von Petersdorff and C.-S. Zhang, A posteriori error analysis for a class of integral equations and variational inequalities, Numer. Math. 116 (2010), no. 3, 519–552. 10.1007/s00211-010-0310-ySearch in Google Scholar

[45] W. H. Reed and T. R. Hill, Triangular mesh methods for the neutron transport equation, Technical Report LA-UR-73-479, Los Alamos Scientific Laboratory, 1973. Search in Google Scholar

[46] B. Rivière, Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation, SIAM, Philadelphia, 2008. 10.1137/1.9780898717440Search in Google Scholar

[47] B. Rivière, M. F. Wheeler and V. Girault, A priori error estimates for finite element methods based on discontinuous approximation spaces for elliptic problems, SIAM J. Numer. Anal. 39 (2001), no. 3, 902–931. 10.1137/S003614290037174XSearch in Google Scholar

[48] A. Signorini, Questioni di elasticità non linearizzata e semilinearizzata, Rend. Mat. e Appl. (5) 18 (1959), 95–139. Search in Google Scholar

[49] A. Veeser, Efficient and reliable a posteriori error estimators for elliptic obstacle problems, SIAM J. Numer. Anal. 39 (2001), no. 1, 146–167. 10.1137/S0036142900370812Search in Google Scholar

[50] R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, Wiley-Teubner, Chichester, 1995. Search in Google Scholar

[51] M. Walloth, A reliable, efficient and localized error estimator for a discontinuous Galerkin method for the Signorini problem, Appl. Numer. Math. 135 (2019), 276–296. 10.1016/j.apnum.2018.09.002Search in Google Scholar

[52] F. Wang, W. Han and X. Cheng, Discontinuous Galerkin methods for solving the Signorini problem, IMA J. Numer. Anal. 31 (2011), no. 4, 1754–1772. 10.1093/imanum/drr010Search in Google Scholar

[53] F. Wang, W. Han and X. Cheng, Discontinuous Galerkin methods for solving a quasistatic contact problem, Numer. Math. 126 (2014), no. 4, 771–800. 10.1007/s00211-013-0574-0Search in Google Scholar

[54] F. Wang, W. Han and X.-L. Cheng, Discontinuous Galerkin methods for solving elliptic variational inequalities, SIAM J. Numer. Anal. 48 (2010), no. 2, 708–733. 10.1137/09075891XSearch in Google Scholar

[55] F. Wang, W. Han, J. Eichholz and X. Cheng, A posteriori error estimates for discontinuous Galerkin methods of obstacle problems, Nonlinear Anal. Real World Appl. 22 (2015), 664–679. 10.1016/j.nonrwa.2014.08.011Search in Google Scholar

[56] L.-H. Wang, On the quadratic finite element approximation to the obstacle problem, Numer. Math. 92 (2002), no. 4, 771–778. 10.1007/s002110100368Search in Google Scholar

[57] A. Weiss and B. I. Wohlmuth, A posteriori error estimator and error control for contact problems, Math. Comp. 78 (2009), no. 267, 1237–1267. 10.1090/S0025-5718-09-02235-2Search in Google Scholar

Received: 2023-01-11
Revised: 2024-01-12
Accepted: 2024-03-09
Published Online: 2024-04-24
Published in Print: 2025-01-01

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 12.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/cmam-2023-0015/html
Scroll to top button