Home Robust Multigrid Methods for Discontinuous Galerkin Discretizations of an Elliptic Optimal Control Problem
Article
Licensed
Unlicensed Requires Authentication

Robust Multigrid Methods for Discontinuous Galerkin Discretizations of an Elliptic Optimal Control Problem

  • Sijing Liu EMAIL logo
Published/Copyright: January 30, 2024

Abstract

We consider discontinuous Galerkin methods for an elliptic distributed optimal control problem, and we propose multigrid methods to solve the discretized system. We prove that the 𝑊-cycle algorithm is uniformly convergent in the energy norm and is robust with respect to a regularization parameter on convex domains. Numerical results are shown for both 𝑊-cycle and 𝑉-cycle algorithms.

MSC 2020: 49J20; 49M41; 65N30; 65N55

Award Identifier / Grant number: DMS-1929284

Funding statement: The revision of this material is based upon work supported by the National Science Foundation under Grant No. DMS-1929284 while the author was in residence at the Institute for Computational and Experimental Research in Mathematics in Providence, RI, during the “Numerical PDEs: Analysis, Algorithms, and Data Challenges” program.

A Proofs of (3.9) and (3.10)

For T T h and v H 1 + s ( Ω ) , where s ( 1 2 , 1 ] , the following trace inequalities with scaling is standard (cf. [25, Lemma 7.2] and [21, Proposition 3.1]):

(A.1) v L 2 ( T ) C ( h T 1 2 v L 2 ( T ) + h T s 1 2 | v | H s ( T ) ) .

The following discrete Poincaŕe inequality for DG functions [8, 4, 20] is valid for all v V h :

(A.2) v L 2 ( Ω ) 2 C ( T Ω v L 2 ( T ) 2 + e T 1 h e [ v ] L 2 ( e ) 2 ) .

Proof

It is well known that [3, 37, 15]

a h sip ( w , v ) C w 1 , h v 1 , h for all w , v V + V h , a h sip ( v , v ) C v 1 , h 2 for all v V h .

For the advection-reaction term, we have, for all w , v V + V h ,

a h ar ( w , v ) = T T h ( ζ w + γ w , v ) T e E h i E h b , ( n ζ [ w ] , { v } ) e ( T T h w L 2 ( T ) 2 ) 1 2 v L 2 ( Ω ) + w L 2 ( Ω ) v L 2 ( Ω ) + ( e E h i E h b , σ h e [ w ] L 2 ( e ) 2 ) 1 2 ( e E h i E h b , h e σ { v } L 2 ( e ) 2 ) 1 2 | | | w | | | h | | | v | | | h ,

where we use ζ [ W 1 , ( Ω ) ] 2 , γ L ( Ω ) , (A.1) and (A.2). Furthermore, upon integration by parts, we have, for all v V h ,

a h ar ( v , v ) = T T h ( ζ v + γ v , v ) T e E h i E h b , ( n ζ [ v ] , { v } ) e = T T h ( ( γ 1 2 ζ ) v , v ) T + T T h T 1 2 ( ζ n ) v 2 d s e E h i E h b , e ζ n [ v ] { v } d s = T T h ( ( γ 1 2 ζ ) v , v ) T + Ω 1 2 | ζ n | v 2 d s .

By assumption (1.4), we immediately have a h ar ( v , v ) 0 . This finishes the proof. ∎

B A Proof of (3.22)

Proof

It follows from (3.20) that

(B.1) p p h L 2 ( Ω ) 2 + y y h L 2 ( Ω ) 2 = ( β 1 2 ( Δ ξ + ζ ξ + γ ξ ) θ , p p h ) L 2 ( Ω ) + ( ξ + β 1 2 ( Δ θ + ζ θ ( γ ζ ) θ ) , y y h ) L 2 ( Ω ) = β 1 2 ( Δ ξ , p p h ) L 2 ( Ω ) + β 1 2 T T h ( ζ ξ + γ ξ , p p h ) T ( θ , p p h ) L 2 ( Ω ) ( ξ , y y h ) L 2 ( Ω ) + β 1 2 ( Δ θ , y y h ) L 2 ( Ω ) + β 1 2 T T h ( ζ θ ( γ ζ ) θ , y y h ) T .

By the consistency of the SIP method (cf. [37, 3]), we have

(B.2) ( Δ ξ , p p h ) = a h sip ( ξ , p p h ) and ( Δ θ , y y h ) = a h sip ( y y h , θ ) .

For the last term in (B.1), it follows from integration by parts that

(B.3) T T h ( ζ θ ( γ ζ ) θ , y y h ) T = T T h ( ζ ( y y h ) , θ ) T ( γ ( y y h ) , θ ) T + T T h T ( ζ n ) ( y y h ) θ d s .

The last term in (B.3) can be rewritten as the following [3, 24]:

(B.4) T T h T ( ζ n ) ( y y h ) θ d s = e E h i e ζ n [ ( y y h ) θ ] d s + e E h b e ζ n ( y y h ) θ d s = e E h i e ζ n [ y y h ] { θ } d s + e E h i e ζ n { y y h } [ θ ] d s + e E h b e ζ n ( y y h ) θ d s .

It then follows from [ θ ] = 0 on interior edges and θ = 0 on Ω that

(B.5) T T h T ( ζ n ) ( y y h ) θ d s = e E h i E h b , e ζ n [ y y h ] { θ } d s .

According to (B.3)–(B.5), we conclude

(B.6) T T h ( ζ θ ( γ ζ ) θ , y y h ) T = a h ar ( y y h , θ ) .

Similarly, we can show

(B.7) T T h ( ζ ξ + γ ξ , p p h ) T = a h ar ( ξ , p p h ) .

Therefore, we obtain the following by (B.2), (B.6), (B.7), (3.3) and (3.2):

p p h L 2 ( Ω ) 2 + y y h L 2 ( Ω ) 2 = β 1 2 a h ( ξ , p p h ) ( θ , p p h ) L 2 ( Ω ) ( ξ , y y h ) L 2 ( Ω ) β 1 2 a h ( y y h , θ ) = B h ( ( p p h , y y h ) , ( ξ , θ ) ) .

Acknowledgements

The author would like to thank Prof. Susanne C. Brenner, Prof. Li-Yeng Sung and Prof. Yi Zhang for the helpful discussion regarding this project.

References

[1] P. F. Antonietti, M. Sarti and M. Verani, Multigrid algorithms for h p -discontinuous Galerkin discretizations of elliptic problems, SIAM J. Numer. Anal. 53 (2015), no. 1, 598–618. 10.1137/130947015Search in Google Scholar

[2] D. N. Arnold, An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal. 19 (1982), no. 4, 742–760. 10.1137/0719052Search in Google Scholar

[3] D. N. Arnold, F. Brezzi, B. Cockburn and L. D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal. 39 (2001/02), no. 5, 1749–1779. 10.1137/S0036142901384162Search in Google Scholar

[4] B. Ayuso and L. D. Marini, Discontinuous Galerkin methods for advection-diffusion-reaction problems, SIAM J. Numer. Anal. 47 (2009), no. 2, 1391–1420. 10.1137/080719583Search in Google Scholar

[5] I. Babuška, The finite element method with Lagrangian multipliers, Numer. Math. 20 (1973), no. 3, 179–192. 10.1007/BF01436561Search in Google Scholar

[6] A. Borzi and V. Schulz, Multigrid methods for PDE optimization, SIAM Rev. 51 (2009), no. 2, 361–395. 10.1137/060671590Search in Google Scholar

[7] J. H. Bramble, Multigrid Methods, Pitman Res. Notes in Math. Ser. 294, John Wiley & Sons, New York, 1993. Search in Google Scholar

[8] S. C. Brenner, Poincaré–Friedrichs inequalities for piecewise H 1 functions, SIAM J. Numer. Anal. 41 (2003), no. 1, 306–324. 10.1137/S0036142902401311Search in Google Scholar

[9] S. C. Brenner, J. Cui, T. Gudi and L.-Y. Sung, Multigrid algorithms for symmetric discontinuous Galerkin methods on graded meshes, Numer. Math. 119 (2011), no. 1, 21–47. 10.1007/s00211-011-0379-ySearch in Google Scholar

[10] S. C. Brenner, J. Cui and L.-Y. Sung, Multigrid methods for the symmetric interior penalty method on graded meshes, Numer. Linear Algebra Appl. 16 (2009), no. 6, 481–501. 10.1002/nla.630Search in Google Scholar

[11] S. C. Brenner, H. Li and L.-Y. Sung, Multigrid methods for saddle point problems: Stokes and Lamé systems, Numer. Math. 128 (2014), no. 2, 193–216. 10.1007/s00211-014-0607-3Search in Google Scholar

[12] S. C. Brenner, H. Li and L.-Y. Sung, Multigrid methods for saddle point problems: Oseen system, Comput. Math. Appl. 74 (2017), no. 9, 2056–2067. 10.1016/j.camwa.2017.06.016Search in Google Scholar

[13] S. C. Brenner, S. Liu and L.-Y. Sung, Multigrid methods for saddle point problems: Optimality systems, J. Comput. Appl. Math. 372 (2020), Article ID 112733. 10.1016/j.cam.2020.112733Search in Google Scholar

[14] S. C. Brenner, D.-S. Oh and L.-Y. Sung, Multigrid methods for saddle point problems: Darcy systems, Numer. Math. 138 (2018), no. 2, 437–471. 10.1007/s00211-017-0911-9Search in Google Scholar

[15] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, Texts Appl. Math. 15, Springer, New York, 2008. 10.1007/978-0-387-75934-0Search in Google Scholar

[16] S. C. Brenner and J. Zhao, Convergence of multigrid algorithms for interior penalty methods, Appl. Numer. Anal. Comput. Math. 2 (2005), no. 1, 3–18. 10.1002/anac.200410019Search in Google Scholar

[17] F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, Rev. Française Automat. Informat. Rech. Opér. Sér. Rouge 8 (1974), no. R2, 129–151. 10.1051/m2an/197408R201291Search in Google Scholar

[18] F. Brezzi, L. D. Marini and E. Süli, Discontinuous Galerkin methods for first-order hyperbolic problems, Math. Models Methods Appl. Sci. 14 (2004), no. 12, 1893–1903. 10.1142/S0218202504003866Search in Google Scholar

[19] W. L. Briggs, V. E. Henson and S. F. McCormick, A Multigrid Tutorial, Society for Industrial and Applied Mathematics, Philadelphia, 2000. 10.1137/1.9780898719505Search in Google Scholar

[20] Z. Chen and H. Chen, Pointwise error estimates of discontinuous Galerkin methods with penalty for second-order elliptic problems, SIAM J. Numer. Anal. 42 (2004), no. 3, 1146–1166. 10.1137/S0036142903421527Search in Google Scholar

[21] P. Ciarlet, Jr., Analysis of the Scott–Zhang interpolation in the fractional order Sobolev spaces, J. Numer. Math. 21 (2013), no. 3, 173–180. 10.1515/jnum-2013-0007Search in Google Scholar

[22] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, Stud. Math. Appl. 4, North-Holland, Amsterdam, 1978. 10.1115/1.3424474Search in Google Scholar

[23] D. A. Di Pietro and A. Ern, Discrete functional analysis tools for discontinuous Galerkin methods with application to the incompressible Navier–Stokes equations, Math. Comp. 79 (2010), no. 271, 1303–1330. 10.1090/S0025-5718-10-02333-1Search in Google Scholar

[24] D. A. Di Pietro and A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods, Math. Appl. (Berlin) 69, Springer, Heidelberg, 2012. 10.1007/978-3-642-22980-0Search in Google Scholar

[25] A. Ern and J.-L. Guermond, Finite element quasi-interpolation and best approximation, ESAIM Math. Model. Numer. Anal. 51 (2017), no. 4, 1367–1385. 10.1051/m2an/2016066Search in Google Scholar

[26] F. Gaspoz, C. Kreuzer, A. Veeser and W. Wollner, Quasi-best approximation in optimization with PDE constraints, Inverse Problems 36 (2020), no. 1, Article ID 014004. 10.1088/1361-6420/ab47f3Search in Google Scholar

[27] W. Gong, Z. Tan and Z. Zhou, Optimal convergence of finite element approximation to an optimization problem with PDE constraint, Inverse Problems 38 (2022), no. 4, Article ID 045004. 10.1088/1361-6420/ac4f5cSearch in Google Scholar

[28] J. Gopalakrishnan and G. Kanschat, A multilevel discontinuous Galerkin method, Numer. Math. 95 (2003), no. 3, 527–550. 10.1007/s002110200392Search in Google Scholar

[29] W. Hackbusch, Multigrid Methods and Applications, Springer Ser. Comput. Math. 4, Springer, Berlin, 1985. 10.1007/978-3-662-02427-0Search in Google Scholar

[30] M. Hinze, A variational discretization concept in control constrained optimization: The linear-quadratic case, Comput. Optim. Appl. 30 (2005), no. 1, 45–61. 10.1007/s10589-005-4559-5Search in Google Scholar

[31] Q. Hong, J. Kraus, J. Xu and L. Zikatanov, A robust multigrid method for discontinuous Galerkin discretizations of Stokes and linear elasticity equations, Numer. Math. 132 (2016), no. 1, 23–49. 10.1007/s00211-015-0712-ySearch in Google Scholar

[32] G. Kanschat and Y. Mao, Multigrid methods for H div -conforming discontinuous Galerkin methods for the Stokes equations, J. Numer. Math. 23 (2015), no. 1, 51–66. 10.1515/jnma-2015-0005Search in Google Scholar

[33] D. Leykekhman, Investigation of commutative properties of discontinuous Galerkin methods in PDE constrained optimal control problems, J. Sci. Comput. 53 (2012), no. 3, 483–511. 10.1007/s10915-012-9582-ySearch in Google Scholar

[34] D. Leykekhman and M. Heinkenschloss, Local error analysis of discontinuous Galerkin methods for advection-dominated elliptic linear-quadratic optimal control problems, SIAM J. Numer. Anal. 50 (2012), no. 4, 2012–2038. 10.1137/110826953Search in Google Scholar

[35] J.-L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Grundlehren Math. Wiss. 170, Springer, New York, 1971. 10.1007/978-3-642-65024-6Search in Google Scholar

[36] J. W. Pearson, M. Stoll and A. J. Wathen, Regularization-robust preconditioners for time-dependent PDE-constrained optimization problems, SIAM J. Matrix Anal. Appl. 33 (2012), no. 4, 1126–1152. 10.1137/110847949Search in Google Scholar

[37] B. Rivière, Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations, Front. Appl. Math. 35, Society for Industrial and Applied Mathematics, Philadelphia, 2008. 10.1137/1.9780898717440Search in Google Scholar

[38] Y. Saad, Iterative Methods for Sparse Linear Systems, Society for Industrial and Applied Mathematics, Philadelphia, 2003. 10.1137/1.9780898718003Search in Google Scholar

[39] J. Schöberl, R. Simon and W. Zulehner, A robust multigrid method for elliptic optimal control problems, SIAM J. Numer. Anal. 49 (2011), no. 4, 1482–1503. 10.1137/100783285Search in Google Scholar

[40] S. Takacs and W. Zulehner, Convergence analysis of all-at-once multigrid methods for elliptic control problems under partial elliptic regularity, SIAM J. Numer. Anal. 51 (2013), no. 3, 1853–1874. 10.1137/120880884Search in Google Scholar

[41] S. Ta’asan, “One-shot” methods for optimal control of distributed parameter systems 1: Finite dimensional control, Technical Report IICASE-Report 91-2, NASA Langley Research Center, Hampton, 1991. Search in Google Scholar

[42] F. Tröltzsch, Optimal Control of Partial Differential Equations: Theory, Methods, and Applications, Grad. Stud. Math. 112, American Mathematical Society, Providence, 2010. 10.1090/gsm/112/07Search in Google Scholar

[43] S. W. Walker, FELICITY: A MATLAB/C++ toolbox for developing finite element methods and simulation modeling, SIAM J. Sci. Comput. 40 (2018), no. 2, C234–C257. 10.1137/17M1128745Search in Google Scholar

Received: 2023-05-16
Revised: 2024-01-12
Accepted: 2024-01-17
Published Online: 2024-01-30
Published in Print: 2025-01-01

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 12.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/cmam-2023-0132/html
Scroll to top button