Abstract
As a novel process intensification technology, microwave-assisted continuous reaction distillation (MRD) was proposed for the esterification reaction and separation of ethyl acetate (EtOAc). The effects of reflux ratio, mole ratio of acetic acid (HOAc) to ethanol (EtOH), reboiler duty, microwave power on EtOH conversions, EtOAc purity and mass ratio of distillate to feed (D/F) were explored. In comparison with conventional heating, the experimental results revealed that the EtOAc purity in the distillate under microwave conditions (MC) was improved. Computer simulations for conventional and MRD systems were performed using the Aspen Plus non-equilibrium stage model to substantiate the experimental results. The model predictions are in good agreement with the experimental data, revealing the accuracy and reliability of the non-equilibrium model. This new MRD process can be an effective and productive method of ester production.
Acknowledgements
The authors wish to express their gratitude for the financial support received from the National Natural Science Foundation of China (no. 21376166).
References
Altman, E., Stefanidis, G. D., van Gerven, T., & Stankiewicz, A. I. (2010). Process intensification of reactive distillation for the synthesis of n-propyl propionate: The effects of microwave radiation on molecular separation and esterification reaction. Industrial & Engineering Chemistry Research, 49, 10287–10296. DOI: 10.1021/ie100555h.10.1021/ie100555hSuche in Google Scholar
Altman, E., Stefanidis, G. D., van Gerven, T., & Stankiewicz, A. (2012). Microwave-promoted synthesis of n-propyl propionate using homogeneous zinc triflate catalyst. Industrial & Engineering Chemistry Research, 51, 1612–1619. DOI: 10.1021/ie200687m.10.1021/ie200687mSuche in Google Scholar
Barbosa, S. L., Dabdoub, M. J., Hurtado, G. R., Klein, S. I., Baroni, A. C. M., & Cunha, C. (2006). Solvent free esterification reactions using Lewis acids in solid phase catalysis. Applied Catalysis A: General, 313, 146–150. DOI: 10.1016/j.apcata.2006.07.015.10.1016/j.apcata.2006.07.015Suche in Google Scholar
Chemerinskiy, M. S. (2014). Microwave defrosting of coal. Coke and Chemistry, 57, 219–221. DOI: 10.3103/s1068364x140500 20.10.3103/s1068364x140500 20Suche in Google Scholar
Delobelle, V., Croquesel, J., Bouvard, D., Chaix, J. M., & Carry, C. P. (2015). Microwave sinter forging of alumina powder. Ceramics International, 41, 7910–7915. DOI: 10.1016/j.ceramint.2015.02.130.10.1016/j.ceramint.2015.02.130Suche in Google Scholar
Ding, Z., Ding, H., & Hou, J. (2012). Kinetics of catalytic synthesis of ethyl acetate under microwave irradiation. Chemical Reaction Engineering and Technology, 2012, 458–463.Suche in Google Scholar
Dutia, P. (2004). Ethyl acetate: A techno-commercial profile. Chemical Weekly, 49, 179–186.Suche in Google Scholar
Fukushima, J., Kashimura, K., Takayama, S., Sato, M., Sano, S., Hayashi, Y., & Takizawa, H. (2013). In-situ kinetic study on non-thermal reduction reaction of CuO during microwave heating. Materials Letters, 91, 252–254. DOI: 10.1016/j.matlet.2012.09.114.10.1016/j.matlet.2012.09.114Suche in Google Scholar
Gao, X., Li, X., Zhang, J., Sun, J., & Li, H. (2013). Influence of a microwave irradiation field on vapor–liquid equilibrium. Chemical Engineering Science, 90, 213–220. DOI: 10.1016/j.ces.2012.12.037.10.1016/j.ces.2012.12.037Suche in Google Scholar
Gedye, R., Smith, F., Westaway, K., Ali, H., Baldisera, L., Laberge, L., & Rousell, J. (1986). The use of microwave ovens for rapid organic synthesis. Tetrahedron Letters, 27, 279–282. DOI: 10.1016/s0040-4039(00)83996-9.10.1016/s0040-4039(00)83996-9Suche in Google Scholar
Guan, J. J., Zhang, T. B., Hui, M., Yin, H. C., Qiu, A. Y., & Liu, X. Y. (2011). Mechanism of microwave-accelerated soy protein isolate–saccharide graft reactions. Food Research International, 44, 2647–2654. DOI: 10.1016/j.foodres.2011.05.015.10.1016/j.foodres.2011.05.015Suche in Google Scholar
Hassini, L., Peczalski, R., & Gelet, J. L. (2015). Drying of granular medium by hot air and microwaves. Modeling and prediction of internal gas pressure and binder distribution. Powder Technology, 286, 636–644. DOI: 10.1016/j.powtec.2015.09.009.10.1016/j.powtec.2015.09.009Suche in Google Scholar
Horikoshi, S., Matsubara, A., Takayama, S., Sato, M., Sakai, F., Kajitani, M., Abe, M., & Serpone, N. (2010). Characterization of microwave effects on metal-oxide materials: Zinc oxide and titanium dioxide. Applied Catalysis B: Environmental, 99, 490–495. DOI: 10.1016/j.apcatb.2009.07.028.10.1016/j.apcatb.2009.07.028Suche in Google Scholar
Hu, S., Zhang, B. J., Hou, X. Q., Li, D. L., & Chen, Q. L. (2011). Design and simulation of an entrainer-enhanced ethyl acetate reactive distillation process. Chemical Engineering and Processing: Process Intensification, 50, 1252–1265. DOI: 10.1016/j.cep.2011.07.012.10.1016/j.cep.2011.07.012Suche in Google Scholar
Kappe, C. O. (2008). Microwave dielectric heating in synthetic organic chemistry. Chemical Society Reviews, 37, 1127–1139. DOI: 10.1039/b803001b.10.1039/b803001bSuche in Google Scholar
Larhed, M., Moberg, C., & Hallberg, A. (2002). Microwaveaccelerated homogeneous catalysis in organic chemistry. Accounts of Chemical Research, 35, 717–727. DOI: 10.1021/ ar010074v.10.1021/ ar010074vSuche in Google Scholar
Lv, B., Liu, G., Dong, X., Wei, W., & Jin, W. (2012). Novel reactive distillation–pervaporation coupled process for ethyl acetate production with water removal from reboiler and acetic acid recycle. Industrial & Engineering Chemistry Research, 51, 8079–8086. DOI: 10.1021/ie3004072.10.1021/ie3004072Suche in Google Scholar
Mandal, A. K., Sen, S., Mandal, S., Guha, C., & Sen, R. (2015). Energy efficient melting of glass for nuclear waste immobilization using microwave radiation. International Journal of Green Energy, 12, 1280–1287. DOI: 10.1080/15435075.2014.895735.10.1080/15435075.2014.895735Suche in Google Scholar
Mavandadi, F., & Lidstrom, P. (2004). Microwave-assisted chemistry in drug discovery. Current Topics in Medicinal Chemistry, 4, 773–792. DOI: 10.2174/1568026043451078.10.2174/1568026043451078Suche in Google Scholar
Nikačević, N. M., Huesman, A. E. M., Van den Hof, P. M. J., & Stankiewicz, A. I. (2012). Opportunities and challenges for process control in process intensification. Chemical Engineering and Processing: Process Intensification, 52, 1–15. DOI: 10.1016/j.cep.2011.11.006.10.1016/j.cep.2011.11.006Suche in Google Scholar
Ramesh, S., Jai Prakash, B. S., & Bhat, Y. S. (2010). Enhancing Brønsted acid site activity of ion exchanged montmorillonite by microwave irradiation for ester synthesis. Applied Clay Science, 48, 159–163. DOI: 10.1016/j.clay.2009.11.053.10.1016/j.clay.2009.11.053Suche in Google Scholar
Segovia-Hernández, J. G., Hernández, S., & Bonilla Petriciolet, A. (2015). Reactive distillation: A review of optimal design using deterministic and stochastic techniques. Chemical Engineering and Processing: Process Intensification, 97, 134– 143. DOI: 10.1016/j.cep.2015.09.004.10.1016/j.cep.2015.09.004Suche in Google Scholar
Shekarriz, M., Taghipoor, S., Khalili, A. A., & Jamarani, M. S. (2003). Esterification of carboxylic acids with alcohols under microwave irradiation in the presence of zinc triflate. Journal of Chemical Research – Part S, 2003, 172–173.Suche in Google Scholar
Sundmacher, K., & Kienle, A. (Eds.) (2003). Reactive distillation: Status and future directions. Weinheim, Germany: Wiley-VCH.Suche in Google Scholar
Toukoniitty, B., Mikkola, J. P., Eränen, K., Salmi, T., & Murzin, D. Y. (2005). Esterification of propionic acid under microwave irradiation over an ion-exchange resin. Catalysis Today, 100, 431–435. DOI: 10.1016/j.cattod.2004.09.075.10.1016/j.cattod.2004.09.075Suche in Google Scholar
Tsukahara, Y., Higashi, A., Yamauchi, T., Nakamura, T., Yasuda, M., Baba, A., & Wada, Y. (2010). In situ observation of nonequilibrium local heating as an origin of special effect of microwave on chemistry. The Journal of Physical Chemistry C, 114, 8965–8970. DOI: 10.1021/jp100509h.10.1021/jp100509hSuche in Google Scholar
Urselmann, M., Barkmann, S., Sand, G., & Engell, S. (2011). Optimization-based design of reactive distillation columns using a memetic algorithm. Computers and Chemical Engineering, 35, 787–805. DOI: 10.1016/j.compchemeng.2011.01.038.10.1016/j.compchemeng.2011.01.038Suche in Google Scholar
Vázquez-Ojeda, M., Segovia-Hernández, J. G., Hernández, S., Hernández-Aguirre, A., & Maya-Yescas, R. (2012). Optimization and controllability analysis of thermally coupled reactive distillation arrangements with minimum use of reboilers. Industrial & Engineering Chemistry Research, 51, 5856–5865. DOI: 10.1021/ie200929t.10.1021/ie200929tSuche in Google Scholar
Xia, S., Dong, X., Zhu, Y., Wei, W., Xiangli, F., & Jin, W. (2011). Dehydration of ethyl acetate–water mixtures using PVA/ceramic composite pervaporation membrane. Separation and Purification Technology, 77, 53–59. DOI: 10.1016/j.seppur.2010.11.019.10.1016/j.seppur.2010.11.019Suche in Google Scholar
© 2016 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Original Paper
- Simultaneous analysis of polar and non-polar components of cell membrane phospholipids by GC-MS
- Original Paper
- Cloud point extraction of disulfiram for its HPLC-MS/MS determination in synthetic urine
- Original Paper
- Revealing the seed proteome of the health benefitting grain amaranth (Amaranthus cruentus L.)
- Original Paper
- Possible role of hydrolytic enzymes (Sap, Kex2) in Candida albicans response to aromatic compounds bearing a sulfone moiety
- Original Paper
- Using nutritional and oxidative stress to increase content of healthbeneficial fatty acids in oleaginous and non-oleaginous yeasts
- Original Paper
- Fatty acids and amino acids of entomopathogenic fungus Conidiobolus coronatus grown on minimal and rich media
- Original Paper
- Promotional effect of cobalt addition on catalytic performance of Ce0.5Zr0.5O2 mixed oxide for diesel soot combustion
- Original Paper
- Microwave-assisted continuous reactive distillation process for preparation of ethyl acetate
- Original Paper
- Wall-retardation effects on particles settling through non-Newtonian fluids in parallel plates
- Original Paper
- Microwave-assisted decomposition of fgd gypsum in the presence of magnetite and anthracite
- Original Paper
- Effect of PHB on the properties of biodegradable PLA blends
- Original Paper
- Thiophene-free diphenyl-amino-stilbene-diketo-pyrrolo-pyrrole derivatives as donors for organic bulk heterojunction solar cells
- Short Communication
- UV-induced reduction of Ag+ by diazene sulphonates: new method of metallisation of surfaces
Artikel in diesem Heft
- Original Paper
- Simultaneous analysis of polar and non-polar components of cell membrane phospholipids by GC-MS
- Original Paper
- Cloud point extraction of disulfiram for its HPLC-MS/MS determination in synthetic urine
- Original Paper
- Revealing the seed proteome of the health benefitting grain amaranth (Amaranthus cruentus L.)
- Original Paper
- Possible role of hydrolytic enzymes (Sap, Kex2) in Candida albicans response to aromatic compounds bearing a sulfone moiety
- Original Paper
- Using nutritional and oxidative stress to increase content of healthbeneficial fatty acids in oleaginous and non-oleaginous yeasts
- Original Paper
- Fatty acids and amino acids of entomopathogenic fungus Conidiobolus coronatus grown on minimal and rich media
- Original Paper
- Promotional effect of cobalt addition on catalytic performance of Ce0.5Zr0.5O2 mixed oxide for diesel soot combustion
- Original Paper
- Microwave-assisted continuous reactive distillation process for preparation of ethyl acetate
- Original Paper
- Wall-retardation effects on particles settling through non-Newtonian fluids in parallel plates
- Original Paper
- Microwave-assisted decomposition of fgd gypsum in the presence of magnetite and anthracite
- Original Paper
- Effect of PHB on the properties of biodegradable PLA blends
- Original Paper
- Thiophene-free diphenyl-amino-stilbene-diketo-pyrrolo-pyrrole derivatives as donors for organic bulk heterojunction solar cells
- Short Communication
- UV-induced reduction of Ag+ by diazene sulphonates: new method of metallisation of surfaces