Home Piroxicam /β-cyclodextrin complex included in cellulose derivatives-based matrix microspheres as new solid dispersion-controlled release formulations
Article
Licensed
Unlicensed Requires Authentication

Piroxicam /β-cyclodextrin complex included in cellulose derivatives-based matrix microspheres as new solid dispersion-controlled release formulations

  • Oum Elkheir Khoukhi , Zineb El Bahri EMAIL logo , Kheira Diaf and Milad Baitiche
Published/Copyright: February 11, 2016
Become an author with De Gruyter Brill

Abstract

New formulations capable to enhance piroxicam (PRX) water solubility and at the same time to control and adjust its release have been developed. For this purpose, two methods have been used and combined to achieve this goal, namely complexation and microencapsulation by O/W emulsion solvent evaporation. In order to modify the drug release, first, microparticles composed of pure PRX and ethylcellulose (EC) or mixtures of EC and hydroxypropylmethylcellulose (HPMC) were prepared, and then, other micropaticles containing the,β-cyclodextrin/piroxicam (,β-CD/PRX) complex obtained by the solvent evaporation technique and EC or a mixture of EC and HPMC were produced and tested. These formulations were characterized by FT-IR, XRD, optical microscopy, and SEM methods. Drug dissolution tests were carried out in acidic media at pH = 1.2 and 37 °C. Depending on the microparticles composition, their size (dio) ranged between 49 pm and 121 pm and PRXioaded varied from 10.8 % to 27.7 %. The effect of complexation and HPMC polymer on the drug release was investigated; the results demonstrated that the Higuchi’s release constant significantly increased when using the EC/HPMC mixture as a matrix with pure PRX or only EC as a matrix with the ,β-CD/PRX complex. The results are remarkably promising since the combination of these processes provided new SD-CR formulations of piroxicam which enabled simultaneous enhancement and control of its release from the carriers.

References

Aejaz, A., & Sadath, A. (2013). Development and characterization of floating microspheres of clarithromycin as gastro retentive dosage form. International Research Journal of Pharmacy, 4(1), 165-168.Search in Google Scholar

Agarwal, S., Wendorff, J. H., & Greiner, A. (2008). Use of electrospinning technique for biomedical applications. Polymer, 49, 5603-5621. DOI: 10.1016/j.polymer.2008.09.014.10.1016/j.polymer.2008.09.014Search in Google Scholar

Aquino, R. P., Auriemma, G., d’Amore, M., D’Ursi, A. M., Mencherini, T., & Del Gaudio, P. (2012). Piroxicam loaded alginate beads obtained by prilling/microwave tandem technique: Morphology and drug release. Carbohydrate Polymers, 89, 740-748. DOI: 10.1016/j.carbpol.2012.04.003.10.1016/j.carbpol.2012.04.003Search in Google Scholar

Berkland, C., Kim, K. K., & Pack, D. W. (2003). PLG microsphere size controls drug release rate through several competing factors. Pharmaceutical Research, 20, 1055-1062. DOI: 10.1023/a: 1024466407849.10.1023/A:1024466407849Search in Google Scholar

Bertoluzza, A., Rossi, M., Taddei, P., Redenti, E., Zanol, M., & Ventura, P. (1999). FT-Raman and FT-IR studies of 1:2.5 piroxicamml: -cyclodextrin inclusion compound. Journal ofMolecular Structure, 480-481, 535-539. DOI: 10.1016/s0022- 2860(98)00734-0.Search in Google Scholar

Bibby, D. C., Davies, N. M., & Tucker, I. G. (2000). Mechanisms by which cyclodextrins modify drug release from polymeric drug delivery systems. International Journal of Pharmaceutics, 197, 1-11. DOI: 10.1016/s0378-5173(00)00335-5.10.1016/S0378-5173(00)00335-5Search in Google Scholar

Bouchal, F., Skiba, M., Chaffai, N., Hallouard, F., Fatmi, S., & Lahiani-Skiba, M. (2015). Fast dissolving cyclodextrin complex of piroxicam in solid dispersion Part I: Influence of - CD and HP -CD on the dissolution rate of piroxicam. International Journal of Pharmaceutics, 478, 625-632. DOI: 10.1016/j.ijpharm.2014.12.019.10.1016/j.ijpharm.2014.12.019Search in Google Scholar

Brunton, L. L., Chabner, B. A., & Knollman, B. C. (2011). Goodman and Gilman’s the pharmacological basis of therapeutics (12th ed.). New York, NY, USA: McGraw-Hill Medical.Search in Google Scholar

Canto, G. S., Dalmora, S. L., & Oliveira, A. G. (1999). Piroxicam encapsulated in liposomes: Characterization and in vivo evaluation of topical anti-inflammatory effect. Drug Development and Industrial Pharmacy, 25, 1235-1239. DOI: 10.1081/ddc-100102293.10.1081/DDC-100102293Search in Google Scholar

Challa, R., Ahuja, A., Ali, J., & Khar, R. K. (2005). Cyclodex- trins in drug delivery: An updated review. AAPS Pharm- SciTech, 6, E329-E357. DOI: 10.1208/pt060243.10.1208/pt060243Search in Google Scholar

Chaudhary, A., Nagaich, U., Gulati, N., Sharma, V. K., & Khosa, R. L. (2012). Enhancement of solubilization and bioavailability of poorly soluble drugs by physical and chemical modifications: A recent review. Journal of Advanced Pharmacy Education & Research, 2, 32-67.Search in Google Scholar

Cilurzo, F., Selmin, F., Minghetti, P., Rimoldi, I., Demartin, F., & Montanari, L. (2005). Fast-dissolving mucoadhesive microparticulate delivery system containing piroxicam. European Journal of Pharmaceutical Sciences, 24, 355-361. DOI: 10.1016/j.ejps.2004.11.010.10.1016/j.ejps.2004.11.010Search in Google Scholar

Del Valle, E. M. M. (2004). Cyclodextrins and their uses: a review. Process Biochemistry, 39, 1033-1046. DOI: 10.1016/ s0032-9592(03)00258-9.10.1016/S0032-9592(03)00258-9Search in Google Scholar

Diaf, K., El Bahri, Z., Chafi, N., Belarbi, L., & Mesli, A. (2012). Ethylcellulose, polycaprolactone, and eudragit matrices for controlled release of piroxicam from tablets and microspheres. Chemical Papers, 66, 779-786. DOI: 10.2478/s11696-012-0191-x.10.2478/s11696-012-0191-xSearch in Google Scholar

Dukic-Ott, A., Remon, J. P., Foreman, P., & Vervaet, C. (2007). Immediate release of poorly soluble drugs from starch- based pellets prepared via extrusion/spheronisation. European Journal of Pharmaceutics and Biopharmaceutics, 67, 715-724. DOI: 10.1016/j.ejpb.2007.04.014.10.1016/j.ejpb.2007.04.014Search in Google Scholar

Escandar, G. M. (1999). Spectrofluororimetric determination of piroxicam in the presence and absence of -cyclodextrin. Analyst, 124, 587-591. DOI: 10.1039/a809180c10.1039/a809180cSearch in Google Scholar

Filipovic-Grcic, J., Becirevic-Lacan, M., Skalkom, N., & Jalsen- jak, I. (1996). Chitosan microspheres of nifedipine and nifedipine-cyclodextrin inclusion complexes. InternationalJournal of Pharmaceutics, 135, 183-190. DOI: 10.1016/0378- 5173(96)04470-5.10.1016/0378-5173(96)04470-5Search in Google Scholar

Freiberg, S., & Zhu, X. X. (2004). Polymer microspheres for controlled drug release. International Journal of Pharmaceutics, 282, 1-18. DOI: 10.1016/j.ijpharm.2004.04.013.10.1016/j.ijpharm.2004.04.013Search in Google Scholar

Ghosal, K., Chakrabarty, S., & Nanda, A. (2011). Hydrox- ypropyl methylcellulose in drug delivery. Der Pharmacia Sinica, 2(2), 152-168.Search in Google Scholar

Higuchi, T. (1963). Mechanism of sustained-action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. Journal of Pharmaceutical Sciences, 52, 1145-1149. DOI: 10.1002/jps.2600521210.10.1002/jps.2600521210Search in Google Scholar

Joseph, N. J., Lakshmi, S., & Jayakrishnan, A. (2002). A floating-type oral dosage form for piroxicam based on hollow polycarbonate microspheres: in vitro and in vivo evaluation in rabbits. Journal of Controlled Release, 79, 71-79. DOI: 10.1016/s0168-3659(01)00507-7.10.1016/S0168-3659(01)00507-7Search in Google Scholar

Jug, M., & Becirevic-Lacan, M. (2004). Influence of hydroxypro- pyl- -cyclodextrin complexation on piroxicam release from buccoadhesive tablets. European Journal of Pharmaceutical Sciences, 21, 251-260. DOI: 10.1016/j.ejps.2003.10.029.10.1016/j.ejps.2003.10.029Search in Google Scholar

Jug, M., Becirevic-Lacan, M., Kwokal, A., & Cetina-Cizmek, B. (2005). Influence of cyclodextrin complexation on piroxicam gel formulations. Acta Pharmaceutica, 55, 223-236.Search in Google Scholar

Jyothi, N. V. N., Prasanna, P. M., Sakarkar, S. N., Prabha, K. S., Ramaiah, P. S., & Srawa, G. Y. (2010). Microencapsulation techniques, factors influencing encapsulation efficiency. Journal of Microencapsulation: Micro and Nano Carriers, 27, 187-197. DOI: 10.3109/02652040903131301.10.3109/02652040903131301Search in Google Scholar

>Kibbe, A. H. (2000). Handbook of pharmaceutical excipients (3rd ed.). Washington, DC, USA: American Pharmacists Association.Search in Google Scholar

Kim, Y. H., Cho, D. W., Kang, S. G., Yoon, M. J., & Kim,D. H. (1994). Excited-state intramolecular proton transfer emission of piroxicam in aqueous -cyclodextrin solutions. Journal of Luminescence, 59, 209-217. DOI: 10.1016/0022- 2313(94)90043-410.1016/0022-2313(94)90043-4Search in Google Scholar

.Korsmeyer, R. W., & Peppas, N. A. (1983). Macromolecular and modeling aspects of swelling-controlled systems. In T. J. Roseman, & S. Z. Mansdorf (Eds.), Controlled release delivery systems (pp. 77-90). New York, NY, USA: Marcel Dekker.Search in Google Scholar

Lai, F., Pini, E., Angioni, G., Manca, M. L., Perricci, J., Sinico, C., & Fadda, A. M. (2011). Nanocrystals as tool to improve piroxicam dissolution rate in novel orally disintegrating tablets. European Journal of Pharmaceutics and Biopharmaceutics, 79, 552-558. DOI: 10.1016/j.ejpb.2011.07.005.10.1016/j.ejpb.2011.07.005Search in Google Scholar PubMed

Lee, C. R., & Balfour, J. A. (1994). Piroxicam- -cyclodextrin. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in rheumatic diseases and pain states. Drugs, 48, 907-929. DOI: 10.2165/00003495199448060-00007.10.2165/00003495-199448060-00007Search in Google Scholar PubMed

Loh, Z. H., Samanta, A. K., & Sia Heng, P. W. (2015). Overview of milling techniques for improving the solubility of poorly water soluble drugs. Asian Journal of Pharmaceutical Sciences, 10, 255-274. DOI: 10.1016/j.ajps.2014.12.006.10.1016/j.ajps.2014.12.006Search in Google Scholar

Lu, X. F., Wang, C., & Wei, Y. (2009). One-dimensional composite nanomaterials: Synthesis by electrospinning and their applications. Small, 5, 2349-2370. DOI: 10.1002/smll.200900 445.10.1002/smll.200900445Search in Google Scholar PubMed

Moffat, A. C., Osselton, M. D., & Widdop, B. (2004). Clarke’s analysis of drugs and poisons (3rd ed). London, UK: Pharmaceutical Press.Search in Google Scholar

Moldenhauer, M. G., & Nairn, J. G. (1990). Formulation parameters affecting the preparation and properties of microencapsulated ion-exchanged resins containing theophylline. Journal of Pharmaceutical Sciences, 79, 659-666. DOI: 10.1002/jps.2600790802.10.1002/jps.2600790802Search in Google Scholar PubMed

Mostafa Kamal, M. A. H., Ahmed, M., Ibne Wahed, M. I., Shah Amran, M., Shaheen, S. M., Rashid, M., & Anwar-Ul- Islam, M. (2008). Development of indomethacin sustained release microcapsules using ethyl cellulose and hydroxy propyl methyl cellulose phthalate by O/W emulsification. Dhaka University Journal of Pharmaceutical Sciences, 7, 83-88. DOI: 10.3329/dujps.v7i1.1223.10.3329/dujps.v7i1.1223Search in Google Scholar

Mura, P. (2015). Analytical techniques for characterization of cyclodextrin complexes in the solid state: A review. Journal of Pharmaceutical and Biomedical Analysis, 113, 226-238. DOI: 10.1016/j.jpba.2015.01.058.10.1016/j.jpba.2015.01.058Search in Google Scholar PubMed

Nagabhushanam, M. V. (2010). Formulation studies on cy- clodextrin complexes of piroxicam. Rasyan Journal of Chemistry, 3, 314-320.Search in Google Scholar

Paaver, U., Lust, A., Mirza, S., Rantanen, J., Veski, P., Heinämäki, J., & Kogermann, K. (2012). Insight into the solubility and dissolution behavior of piroxicam anhydrate and monohydrate forms. International Journal of Pharmaceutics, 431, 111-119. DOI: 10.1016/j.ijpharm.2012.04.042.10.1016/j.ijpharm.2012.04.042Search in Google Scholar PubMed

Paaver, U., Heinämäki, J., Kassamakov, I., H^ggström, E., Yli- talo, T., Nolvi, A., Kozlova, J., Laidmäe, I., Kogermann, K., & Veski, P. (2014). Nanometer depth resolution in 3D topographic analysis of drug-loaded nanofibrous mats without sample preparation. International Journal ofPharmaceutics, 462, 29-37. DOI: 10.1016/j.ijpharm.2013.12.041.10.1016/j.ijpharm.2013.12.041Search in Google Scholar PubMed

Paaver, U., Heinämäki, J., Laidmäe, I., Lust, A., Kozlova, J., Sillaste, E., Kirsimäe, K., Veski, P., & Kogermann, K. (2015). Electrospun nanofibers as a potential controlled- release solid dispersion system for poorly water-soluble drugs. International Journal of Pharmaceutics, 479, 252-260. DOI: 10.1016/j.ijpharm.2014.12.024.10.1016/j.ijpharm.2014.12.024Search in Google Scholar PubMed

Patil, J. S., Kadam, D. V., Marapur, S. C., & Kamalapur, M. V. (2010). Inclusion complex system; a novel technique to improve the solubility and bioavailability of poorly soluble drugs: A review. International Journal of Pharmaceutical Sciences Review and Research, 2(2), 29-34.Search in Google Scholar

Pelipenko, J., Kristl, J., Jankovic, B., Baumgartner, S., & Kocbek, P. (2013). The impact of relative humidity during electrospinning on the morphology and mechanical properties of nanofibers. International Journal of Pharmaceutics, 456, 125-134. DOI: 10.1016/j.ijpharm.2013.07.078.10.1016/j.ijpharm.2013.07.078Search in Google Scholar PubMed

Phalguna, Y., Venkateshwarlu, B. S., Gudas, G. K., & Debnath, S. (2010). HPMC microspheres of zidovudine for sustained release. International Journal of Pharmacy and Pharmaceutical Sciences, 2(Suppl 4), 41-43.Search in Google Scholar

Phutane, P., Shidhaye, S., Lotlikar, V., Ghule, A., Sutar, S., & Kadam, V. (2010). In vitro evaluation of novel sustained release microspheres of glipizide prepared by the emulsion solvent diffusion-evaporation method. Journal of Young Pharmacists, 2, 35-41. DOI: 10.4103/0975-1483.62210.10.4103/0975-1483.62210Search in Google Scholar

Piao, M. G., Yang, C. W., Li, D. X., Kim, J. O., Jang, K. Y., Yoo, B. K., Kim, J. A., Woo, J. S., Lyoo, W. S., Han, S. S., Lee, Y. B., Kim, D. D., Yong, C. S., & Choi, H. G. (2008). Preparation and in vivo evaluation of piroxicam- loaded gelatin microcapsule by spray drying technique. Biological and Pharmaceutical Bulletin, 31, 1284-1287. DOI: 10.1248/bpb.31.1284.10.1248/bpb.31.1284Search in Google Scholar

Raut, N. S., Somvanshi, S., Jumde, A. B., Khandelwal, H. M., Umekar, M. J., & Kotagale, N. R. (2013). Ethyl cellulose and hydroxypropyl methyl cellulose buoyant microspheres of metoprolol succinate: Influence of pH modifiers. International Journal of Pharmaceutical Investigation, 3, 163-170. DOI: 10.4103/2230-973x.119235.10.4103/2230-973X.119235Search in Google Scholar

Redenti, E., Peveri, T., Zanol, M., Ventura, P., Gnappi, G., & Montenero, A. (1996). A study on the differentiation between amorphous piroxicamml: -cyclodextrin complex and a mixture of the two amorphous components. International Journal of Pharmaceutical Science, 129, 289-294. DOI: 10.1016/0378- 5173(95)04357-g.10.1016/0378-5173(95)04357-8Search in Google Scholar

>Rozou, S., Voulgari, A., & Antoniadou-Vyza, E. (2004). The effect of pH dependent molecular conformation and dimer- ization phenomena of piroxicam on the drug:cyclodextrin complex stoichiometry and its chromatographic behaviour: A new specific HPLC method for piroxicamml:cyclodextrin formulations. European Journal of Pharmaceutical Sciences, 21, 661-669. DOI: 10.1016/j.ejps.2004.01.007.10.1016/j.ejps.2004.01.007Search in Google Scholar PubMed

Saravanan, M., & Anupama, B. (2011). Development and evaluation of ethylcellulose floating microspheres loaded with ranitidine hydrochloride by novel solvent evaporation-matrix erosion method. Carbohydrate Polymers, 85, 592-596. DOI: 10.1016/j.carbpol.2011.03.020.10.1016/j.carbpol.2011.03.020Search in Google Scholar

Savjani, K. T., Gajjar, A. K., & Savjani, J. K. (2012). Drug solubility: Importance and enhancement techniques. ISRN Pharmaceutics, 2012, 195727. DOI: 10.5402/2012/195727.10.5402/2012/195727Search in Google Scholar PubMed PubMed Central

Scarpignato, C. (2013). Piroxicam- -cyclodextrin: A GI safer piroxicam. Current Medicinal Chemistry, 20, 2415-2437. DOI: 10.2174/09298673113209990115.10.2174/09298673113209990115Search in Google Scholar PubMed PubMed Central

Srivastava, A. K., Ridhurkar, D. N., & Wadhwa, S. (2005). Floating microspheres of cimetidine: Formulation, characterization and in vitro evaluation. Acta Pharmaceutica, 55, 277285.Search in Google Scholar

Taepaiboon, P., Rungsardthong, U., & Supaphol, P. (2006). Drug-loaded electrospun mats of poly(vinyl alcohol) fibres and their release characteristics of four model drugs. Nanotechnology, 17, 2317-2329. DOI: 10.1088/0957-4484/17/9/ 041.10.1088/0957-4484/17/9/041Search in Google Scholar

Tran, P. H. L., Tran, T. T. D., Park, J. B., & Lee, B. J. (2011). Controlled release systems containing solid dispersions: Strategies and mechanisms. Pharmaceutical Research, 28, 2353-2378. DOI: 10.1007/s11095-011-0449-y.10.1007/s11095-011-0449-ySearch in Google Scholar PubMed

Turro, N. J., Okubo, T., & Chung, C. J. (1982). Analysis of static and dynamic host-guest associations of detergents with cyclodextrins via photoluminescence methods. Journal of the American Chemical Society, 104, 1789-1794. DOI: 10.1021/ja00371a001.10.1021/ja00371a001Search in Google Scholar

Wade, A., & Weller, P. J. (1994). Handbook of pharmaceutical excipients (2nd ed.). Washington, DC, USA: American Pharmaceutical Association.Search in Google Scholar

Wagenaar, B. W., & Müller, B. W. (1994). Piroxicam release from spray-dried biodegradable microspheres. Biomaterials, 15, 49-54. DOI: 10.1016/0142-9612(94)90196-1.10.1016/0142-9612(94)90196-1Search in Google Scholar

en, H., & Park, K. N. (Eds.) (2010). Oral controlled release formulation design and drug delivery: Theory and practice. Hoboken, NJ, USA: Wiley.10.1002/9780470640487Search in Google Scholar

Xua, Q. X., Chin, S. E., Wang, C. H., & Pack, D. W. (2013). Mechanism of drug release from double-walled PDLLA(PLGA) microspheres. Biomaterials, 34, 3902-3911. DOI: 10.1016/j.biomaterials.2013.02.015.10.1016/j.biomaterials.2013.02.015Search in Google Scholar PubMed PubMed Central

Received: 2015-8-8
Revised: 2015-11-15
Accepted: 2015-11-19
Published Online: 2016-2-11
Published in Print: 2016-6-1

© 2016 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Original Paper
  2. A practical approach to non-spectral interferences elimination in inductively coupled plasma optical emission spectrometry
  3. Original Paper
  4. Two 1,8-naphthalimide-based proton-receptor fluorescent probes for pH determination
  5. Original Paper
  6. Fabrication of amperometric cholesterol biosensor based on SnO2 nanoparticles and Nafion-modified carbon paste electrode
  7. Original Paper
  8. Preparation and catalytic performance of quaternary ammonium base resin for methanolysis of natural phosphatidylcholine
  9. Original Paper
  10. Optimisation of microwave-assisted extraction from Phyllanthus amarus for phenolic compounds-enriched extracts and antioxidant capacity
  11. Original Paper
  12. Red clover (Trifolium pratense L.) honey: volatiles chemical-profiling and unlocking antioxidant and anticorrosion capacity
  13. Original Paper
  14. Application of vacuum membrane distillation for concentration of organic solutions
  15. Original Paper
  16. Correlations for mixing energy in processes using Rushton turbine mixer‡
  17. Original Paper
  18. Recovery of Au(III) ions by Au(III)-imprinted hydrogel
  19. Original Paper
  20. Initiation behaviour in hydrogenation of pyrolysis gasoline over presulphided Ni-Mo-Zn/Al2O3 catalyst
  21. Original Paper
  22. Methodology considering surface roughness in UV water disinfection reactors
  23. Original Paper
  24. Comparison of changes of basic parameters of asphalt caused by various additives
  25. Original Paper
  26. Effect of carbon nanotube modification on poly (butylene terephthalate)-based composites
  27. Original Paper
  28. Evaluation of influence of selected metal cations on antioxidant activity of extracts from savory (Satureja hortensis)
  29. Original Paper
  30. Radical-scavenging activity of glutathione, chitin derivatives and their combination
  31. Original Paper
  32. Piroxicam /β-cyclodextrin complex included in cellulose derivatives-based matrix microspheres as new solid dispersion-controlled release formulations
  33. Original Paper
  34. Avobenzone encapsulated in modified dextrin for improved UV protection and reduced skin penetration
  35. Original Paper
  36. Analysis of the dynamics of laser induced plume propagation from liquid matrix using fast photography
  37. Original Paper
  38. OH-initiated oxidation mechanism and kinetics of organic sunscreen benzophenone-3: A theoretical study
Downloaded on 27.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/chempap-2016-0014/html?lang=en
Scroll to top button