Home A new high-temperature inorganic–organic proton conductor: lanthanum sulfophenyl phosphate
Article
Licensed
Unlicensed Requires Authentication

A new high-temperature inorganic–organic proton conductor: lanthanum sulfophenyl phosphate

  • Ming-Feng Song , Zhong-Fang Li EMAIL logo , Guo-Hong Liu , Su-Wen Wang , Xiao-Yan Yin and Yu-Xin Wang
Published/Copyright: December 17, 2015
Become an author with De Gruyter Brill

Abstract

Lanthanum sulfophenyl phosphate (LaSPP) was synthesized by m-sulfophenyl phosphonic acid and lanthanum nitrate. UV-Vis spectrophotometry and Fourier-transform infrared spectroscopy indicate that the desired product was obtained and its elementary composition and typical layered structure were determined by energy dispersive X-ray spectroscopy and scanning electron microscopy. Transmission electron microscopy (TEM) proved its typical layered structure and X-ray diffraction spectroscopy indicated its good crystallinity and the interlayer distance of about 15.67 Å , which matches the value obtained by TEM (2.0 nm). Thermogravimetry and differential thermal analysis revealed good thermal stability of LaSPP. Proton conductivity of LaSPP was measured at different temperatures and relative humidities (RH), reaching values of 0.123 S cm-1 at 150°C and 100 % RH. Proton transfer activation energy was 22.52 kJ mol-1. At 160°C and 50 % RH, the conductivity was 0.096 S cm-1. In the drying oven, the conductivity retained the value of 1.118 × 10-2 S cm-1. The results show that LaSPP is a highly effective inorganic-organic conductor.

References

Ahmad, M. I., Zaidi, S. M. J., Rahman, S. U., & Ahmed, S. (2006). Synthesis and proton conductivity of heteropolyacids loaded Y-zeolite as solid proton conductors for fuel cell applications. Microporous and Mesoporous Materials, 91, 296-304. DOI: 10.1016/j.micromeso.2005.10.029.10.1016/j.micromeso.2005.10.029Search in Google Scholar

Aili, D., Hansen, M. K., Pan, C., Li, Q. F., Christensen, E., Jensen, J. O., & Bjerrum, N. J. (2011). Phosphoric acid doped membranes based on Nafion®, PBI and their blends - Membrane preparation, characterization and steam electrolysis testing. International Journal of Hydrogen Energy, 36, 6985-6993. DOI: 10.1016/j.ijhydene.2011.03.058.10.1016/j.ijhydene.2011.03.058Search in Google Scholar

Alberti, G., Casciola, M., Capitani, D., Donnadio, A., Narducci, R., Pica, M., & Sganappa, M. (2007). Novel Nafion- zirconium phosphate nanocomposite membranes with enhanced stability of proton conductivity at medium temperature and high relative humidity. Electrochimica Acta, 52, 8125-8132. DOI: 10.1016/j.electacta.2007.07.019.10.1016/j.electacta.2007.07.019Search in Google Scholar

Amirinejad, M., Madaeni, S. S., Rafiee, E., & Amirinejad, S. (2011). Cesium hydrogen salt of heteropolyacids/Nafion nanocomposite membranes for proton exchange membrane fuel cells. Journal of Membrane Science, 377, 89-98. DOI: 10.1016/j.memsci.2011.04.014.10.1016/j.memsci.2011.04.014Search in Google Scholar

Amirinejad, M., Madaeni, S. S., Lee, K. S., Ko, U., Rafiee, E., & Lee, J. S. (2012). Sulfonated poly(arylene ether)/heteropolyacids nanocomposite membranes for proton exchange membrane fuel cells. Electrochimica Acta, 62, 227-233. DOI: 10.1016/j.electacta.2011.12.025.10.1016/j.electacta.2011.12.025Search in Google Scholar

Colomer, M. T. (2006). Nanoporous anatase thin films as fast proton-conducting materials. Advanced Materials, 18, 371-374. DOI: 10.1002/adma.200500689.10.1002/adma.200500689Search in Google Scholar

Colomer, M. T., & Zenzinger, K. (2012). Mesoporous α-Fe2O3 membranes as proton conductors: Synthesis by microwaveassisted sol-gel route and effect of their textural characteristics on water uptake and proton conductivity. Microporous and Mesoporous Materials, 161, 123-133. DOI: 10.1016/j.micromeso.2012.05.009.10.1016/j.micromeso.2012.05.009Search in Google Scholar

Cui, Z. M., Xing, W., Liu, C. P., Liao, J. H., & Zhang, H. (2009). Chitosan/heteropolyacid composite membranes for direct methanol fuel cell. Journal of Power Sources, 188, 24-29. DOI: 10.1016/j.jpowsour.2008.11.108.10.1016/j.jpowsour.2008.11.108Search in Google Scholar

Dong, F. L., Li, Z. F., & Wang, Z. H. (2011a). Cerium sulfonphenyl phosphate, a novel inorgano-organic solid proton- conducting material. Materials Letters, 65, 1431-1433. DOI: 10.1016/j.matlet.2011.02.024.10.1016/j.matlet.2011.02.024Search in Google Scholar

Dong, F. L., Li, Z. F., Wang, S. W., Xu, L. J., & Yu, X. J. (2011b). Preparation and properties of sulfonated poly(phthalazinone ether sulfone ketone)/zirconium sulfophenylphosphate/ PTFE composite membranes. International Journal of Hydrogen Energy, 36, 3681-3687. DOI: 10.1016/j.ijhydene.2010.12.014.10.1016/j.ijhydene.2010.12.014Search in Google Scholar

Dong, F. L., Li, Z. F., Wang, S. W., & Wang, Z. H. (2011c). Synthesis and characteristics of proton-conducting membranes based on cerium sulfonphenyl phosphate and poly (2,5-benzimidazole) by hot-pressed method. International Journal of Hydrogen Energy, 36, 11068-11074. DOI: 10.1016/j.ijhydene.2011.05.128.10.1016/j.ijhydene.2011.05.128Search in Google Scholar

Jin, L., Li, Z. F., Wang, S. W., Wang, Z. H., Dong, F. L., & Yin, X. Y. (2012). Highly conductive proton exchange membranes based on sulfonated poly(phthalazinone ether sulfone) and cerium sulfophenyl phosphate. Reactive & Functional Polymers, 72, 549-555. DOI: 10.1016/j.reactfunctpolym.2012.05. 007.Search in Google Scholar

Kozhevnikov, I. V. (2007). Sustainable heterogeneous acid catalysis by heteropoly acids. Journal of Molecular Catalysis A: Chemical, 262, 86-92. DOI: 10.1016/j.molcata.2006.08.072.10.1016/j.molcata.2006.08.072Search in Google Scholar

Li, Z. F., Dong, F. L., Xu, L. J.,Wang, S. V., & Yu, X. J. (2010). Preparation and properties of medium temperature membranes based on zirconium sulfophenylphosphate/sulfonated poly(phthalazinone ether sulfone ketone) for direct methanol fuel cells. Journal of Membrane Science, 351, 50-57. DOI: 10.1016/j.memsci.2010.01.027.10.1016/j.memsci.2010.01.027Search in Google Scholar

Liu, G. H., Li, Z. F., Jin, L., & Wang, S. W. (2014). Synthesis of ironIII sulfophenyl phosphate nanosheets as a high temperature inorganic-organic proton conductor. Ionics, 20, 1399-1406. DOI: 10.1007/s11581-014-1109-0.10.1007/s11581-014-1109-0Search in Google Scholar

Montoneri, E., Gallazzi, M. C., & Grassi, M. (1989). Organosulphur phosphorus acid compounds. Part 1. m-Sulphophenylphosphonic acid. Journal of the Chemical Society, Dalton Transactions, 1989, 1819-1823. DOI: 10.1039/dt9890001819.10.1039/dt9890001819Search in Google Scholar

Park, C. H., Lee, C. H., Guiver, M. D., & Lee, Y. M. (2011). Sulfonated hydrocarbon membranes for medium-temperature and low-humidity proton exchange membrane fuel cells (PEMFCs). Progress in Polymer Science, 36, 1443-1498. DOI: 10.1016/j.progpolymsci.2011.06.001.10.1016/j.progpolymsci.2011.06.001Search in Google Scholar

Ponomareva, V. G., Lavrova, G. V., & Hairetdinov, E. F. (1997). Hydrogen sensor based on antimonium pentoxide-phosphoric acid solid electrolyte. Sensors and Actuators B: Chemical, 40, 95-98. DOI: 10.1016/s0925-4005(97)80246-8.10.1016/S0925-4005(97)80246-8Search in Google Scholar

Poonjarernsilp, C., Sano, N., & Tamon, H. (2014). Hydrothermally sulfonated single-walled carbon nanohorns for use as solid catalysts in biodiesel production by esterification of palmitic acid. Applied Catalysis B: Environmental, 147, 726-732. DOI: 10.1016/j.apcatb.2013.10.006.10.1016/j.apcatb.2013.10.006Search in Google Scholar

Qin, Q., Tang, Q. W., Li, Q. H., He, B. L., Chen, H. Y., Wang, X., & Yang, P. Z. (2014). Incorporation of H3PO4 into three-dimensional polyacrylamide-graft-starch hydrogel frameworks for robust high-temperature proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 39, 4447-4458. DOI: 10.1016/j.ijhydene.2013.12.205.10.1016/j.ijhydene.2013.12.205Search in Google Scholar

Timofeeva, M. N. (2003). Acid catalysis by heteropoly acids. Applied Catalysis A: General, 256, 19-35. DOI: 10.1016/ s0926-860x(03)00386-7.10.1016/S0926-860X(03)00386-7Search in Google Scholar

Tong, X., Wu, W., Wu, Q. Y., Cao, F. H., Yan, W. F., & Yaroslavtsev, A. B. (2013). Proton conducting composite materials containing heteropoly acid and matrices. Materials Chemistry and Physics, 143, 355-359. DOI: 10.1016/j.matchemphys.2013.09.009.10.1016/j.matchemphys.2013.09.009Search in Google Scholar

Urban, J., Havliček, D., & Krajbich, J. (2015). Preparation of quaternary pyridinium salts as possible proton conductors. Chemical Papers, 69, 448-455. DOI: 10.1515/chempap-2015-0037.10.1515/chempap-2015-0037Search in Google Scholar

Wang, S. W., Dong, F. L., & Li, Z. F. (2012a). Protonconducting membrane preparation based on SiO2-riveted phosphotungstic acid and poly (2,5-benzimidazole) via direct casting method and its durability. Journal of Materials Science, 47, 4743-4749. DOI: 10.1007/s10853-012-6350-1.10.1007/s10853-012-6350-1Search in Google Scholar

Wang, S. W., Dong, F. L., Li, Z. F., & Jin, L. (2012b). Preparation and properties of sulfonated poly(phthalazinone ether sulfone ketone)/tungsten oxide composite membranes. Asia- Pacific Journal of Chemical Engineering, 7, 528-533. DOI: 10.1002/apj.603. 10.1002/apj.603Search in Google Scholar

Received: 2015-4-4
Revised: 2015-9-17
Accepted: 2015-9-17
Published Online: 2015-12-17
Published in Print: 2016-3-1

Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Synthesis and properties of new N,N′-phenyltetrazole podand
  2. Molecular diagnosis of Pompe disease using MALDI TOF/TOF and 1H NMR
  3. Erythritol biosynthesis from glycerol by Yarrowia lipolytica yeast: effect of osmotic pressure
  4. Cloning and expression of two genes coding endo-β-1,4-glucanases from Trichoderma asperellum PQ34 in Pichia pastoris
  5. Adsorption desulphurisation of dimethyl sulphide using nickel-based Y zeolites pretreated by hydrogen reduction
  6. Equilibrium and kinetics of wetting hydrophobic microporous membrane in sodium dodecyl benzene sulphonate and diethanolamine aqueous solutions
  7. Separation of urea adducts in the analysis of complex mineral fertilisers
  8. Cheese whey tangential filtration using tubular mineral membranes
  9. Characterization of the quality of novel rye-buckwheat ginger cakes by chemical markers and antioxidant capacity
  10. A new high-temperature inorganic–organic proton conductor: lanthanum sulfophenyl phosphate
  11. Membranes with a plasma deposited titanium isopropoxide layer
  12. Effect of fuel content on formation of zinc aluminate nano and micro-particles synthesised by high rate sol–gel autoignition of glycine-nitrates
  13. Poly(butyl cyanoacrylate) nanoparticles stabilised with poloxamer 188: particle size control and cytotoxic effects in cervical carcinoma (HeLa) cells
  14. Solubility enhancement of phenanthrene using novel chelating surfactant
  15. Physicochemical and excess properties of binary mixtures of (1-alkyl-3-methylimidazoliumchloride/bromide + ethylene glycol) at T = (288.15 to 333.15) K
Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/chempap-2015-0219/pdf?lang=en
Scroll to top button