Abstract
Porous polypropylene membranes were coated with plasma polymerized titanium isopropoxide in a 75 kHz plasma reactor. It was noted that the presence of air in the plasma chamber increased the amount of deposited polymer. Selection of the process parameters enabled obtaining membranes with up to 300 μg cm-2 of polymerized titanium isopropoxide. Deposition of the titanium oxide layer resulted in the reduction of permeate flux but it significantly improved the membrane photocleaning ability. The recovery index reached the level of 95 % for membranes with the highest amount of the titanium oxide deposit.
References
Borras, A., Alvarez, R., Sanchez-Valencia, J. R., Ferrer, J., & Gonzalez-Elipe, A. R. (2012). Critical thickness and nanoporosity of TiO2 optical thin films. Microporous and Mesoporous Materials, 160, 1-9. DOI: 10.1016/j.micromeso. 2012.04.035.Search in Google Scholar
Chaukulkar, R. P., & Agarwal, S. (2013). Atomic layer deposition of titanium dioxide using titanium tetrachloride and titanium tetraisopropoxide as precursors. Journal of Vacuum Science & Technology A, 31, 031509. DOI: 10.1116/1.4798385.10.1116/1.4798385Search in Google Scholar
Dang, B. H. Q., Rahman, M., MacElroy, D., & Dowling, D. P. (2012). Evaluation of microwave plasma oxidation treatments for the fabrication of photoactive un-doped and carbon-doped TiO2 coatings. Surface and Coatings Technology, 206, 4113-4118. DOI: 10.1016/j.surfcoat.2012.04.003.10.1016/j.surfcoat.2012.04.003Search in Google Scholar
Gao, Y. F., Masuda, Y., Peng, Z. F., Yonezawa, T., & Koumoto, K. (2003). Room temperature deposition of a TiO2 thin film from aqueous peroxotitanate solution. Journal of Materials Chemistry, 13, 608-613. DOI: 10.1039/b208681f.10.1039/b208681fSearch in Google Scholar
George, S. M. (2010). Atomic layer deposition: An overview. Chemical Reviews, 110, 111-131. DOI: 10.1021/cr900056b.10.1021/cr900056bSearch in Google Scholar PubMed
Ghorashi, M. S., Hosseinnia, A., Hessari, F. A., & Ganjkhanlou, Y. (2013). The effect of heat treatment in the reducing atmosphere on the physical properties of TiO2 thin films prepared by sol-gel method. Journal of Sol-Gel Science and Technology, 67, 236-243. DOI: 10.1007/s10971-013-3069-7.10.1007/s10971-013-3069-7Search in Google Scholar
Huang, H., & Yao, X. (2004). Preparation of rutile TiO2 thin films by mist plasma evaporation. Surface and Coatings Technology, 191, 54-58. DOI: 10.1016/j.surfcoat.2004.04.073.10.1016/j.surfcoat.2004.04.073Search in Google Scholar
Klenko, Y., & Pichal, J. (2012). TiOx films deposited by plasma enhanced chemical vapour deposition method in atmospheric dielectric barrier discharge plasma. Plasma Chemistry and Plasma Processing, 32, 1215-1225. DOI: 10.1007/s11090-012-9401-0.10.1007/s11090-012-9401-0Search in Google Scholar
Kumar, S. M., Deshpande, P. A., Krishna, M., Krupashankara, M. S., & Madras, G. (2010). Photocatalytic activity of microwave plasma-synthesized TiO2 nanopowder. Plasma Chemistry and Plasma Processing, 30, 461-470. DOI: 10. 1007/s11090-010-9235-6.10.1007/s11090-010-9235-6Search in Google Scholar
Lee, J., Lee, S. J., Han, W. B., Jeon, H., Park, J., Jang, W., Yoon, C. S., & Jeon, H. (2013). Deposition temperature dependence of titanium oxide thin films grown by remoteplasma atomic layer deposition. Physica Status Solidi A, 210, 276-284. DOI: 10.1002/pssa.201228671.10.1002/pssa.201228671Search in Google Scholar
Li, D., Carette, M., Granier, A., Landesman, J. P., & Goullet, A. (2012). Spectroscopic ellipsometry analysis of TiO2 films deposited by plasma enhanced chemical vapor deposition in oxygen/titanium tetraisopropoxide plasma. Thin Solid Films, 522, 366-371. DOI: 10.1016/j.tsf.2012.07.091.10.1016/j.tsf.2012.07.091Search in Google Scholar
Pakdel, E., Daoud, W. A., & Wang, X. G. (2013). Self-cleaning and superhydrophilic wool by TiO2/SiO2 nanocomposite. Applied Surface Science, 275, 397-402. DOI: 10.1016/j. apsusc.2012.10.141.Search in Google Scholar
Sobczyk-Guzenda, A., Pietrzyk, B., Szymanowski, H., Gazicki- Lipman, M., & Jakubowski, W. (2013). Photocatalytic activity of thin TiO2 films deposited using sol-gel and plasma enhanced chemical vapor deposition methods. Ceramics International, 39, 2787-2794. DOI: 10.1016/j.cermint.2012.09.046.Search in Google Scholar
Theirich, D., Müller, R., Zilberberg, K., Trost, S., Behrendt, A., & Riedl, T. (2013). Atmospheric pressure plasma ALD of titanium oxide. Chemical Vapor Deposition, 19, 167-173. DOI: 10.1002/cvde.201207039.10.1002/cvde.201207039Search in Google Scholar
Xu, Q., Yang, J., Dai, J. W., Yang, Y., Chen, X. Q., & Wang, Y. (2013). Hydrophilization of porous polypropylene membranes by atomic layer deposition of TiO2 for simultaneously improved permeability and selectivity. Journal of Membrane Science, 448, 215-222. DOI: 10.1016/j.memsci.2013.08.018.10.1016/j.memsci.2013.08.018Search in Google Scholar
Zhang, X. W., Guo, Y., & Han, G. R. (2007). Fabrication of titanium dioxide thin films by DBD-CVD under atmosphere. Plasma Science and Technology, 9, 674-677. DOI: 10.1088/1009-0630/9/6/07. 10.1088/1009-0630/9/6/07Search in Google Scholar
Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Synthesis and properties of new N,N′-phenyltetrazole podand
- Molecular diagnosis of Pompe disease using MALDI TOF/TOF and 1H NMR
- Erythritol biosynthesis from glycerol by Yarrowia lipolytica yeast: effect of osmotic pressure
- Cloning and expression of two genes coding endo-β-1,4-glucanases from Trichoderma asperellum PQ34 in Pichia pastoris
- Adsorption desulphurisation of dimethyl sulphide using nickel-based Y zeolites pretreated by hydrogen reduction
- Equilibrium and kinetics of wetting hydrophobic microporous membrane in sodium dodecyl benzene sulphonate and diethanolamine aqueous solutions
- Separation of urea adducts in the analysis of complex mineral fertilisers
- Cheese whey tangential filtration using tubular mineral membranes
- Characterization of the quality of novel rye-buckwheat ginger cakes by chemical markers and antioxidant capacity
- A new high-temperature inorganic–organic proton conductor: lanthanum sulfophenyl phosphate
- Membranes with a plasma deposited titanium isopropoxide layer
- Effect of fuel content on formation of zinc aluminate nano and micro-particles synthesised by high rate sol–gel autoignition of glycine-nitrates
- Poly(butyl cyanoacrylate) nanoparticles stabilised with poloxamer 188: particle size control and cytotoxic effects in cervical carcinoma (HeLa) cells
- Solubility enhancement of phenanthrene using novel chelating surfactant
- Physicochemical and excess properties of binary mixtures of (1-alkyl-3-methylimidazoliumchloride/bromide + ethylene glycol) at T = (288.15 to 333.15) K
Articles in the same Issue
- Synthesis and properties of new N,N′-phenyltetrazole podand
- Molecular diagnosis of Pompe disease using MALDI TOF/TOF and 1H NMR
- Erythritol biosynthesis from glycerol by Yarrowia lipolytica yeast: effect of osmotic pressure
- Cloning and expression of two genes coding endo-β-1,4-glucanases from Trichoderma asperellum PQ34 in Pichia pastoris
- Adsorption desulphurisation of dimethyl sulphide using nickel-based Y zeolites pretreated by hydrogen reduction
- Equilibrium and kinetics of wetting hydrophobic microporous membrane in sodium dodecyl benzene sulphonate and diethanolamine aqueous solutions
- Separation of urea adducts in the analysis of complex mineral fertilisers
- Cheese whey tangential filtration using tubular mineral membranes
- Characterization of the quality of novel rye-buckwheat ginger cakes by chemical markers and antioxidant capacity
- A new high-temperature inorganic–organic proton conductor: lanthanum sulfophenyl phosphate
- Membranes with a plasma deposited titanium isopropoxide layer
- Effect of fuel content on formation of zinc aluminate nano and micro-particles synthesised by high rate sol–gel autoignition of glycine-nitrates
- Poly(butyl cyanoacrylate) nanoparticles stabilised with poloxamer 188: particle size control and cytotoxic effects in cervical carcinoma (HeLa) cells
- Solubility enhancement of phenanthrene using novel chelating surfactant
- Physicochemical and excess properties of binary mixtures of (1-alkyl-3-methylimidazoliumchloride/bromide + ethylene glycol) at T = (288.15 to 333.15) K