Startseite Transport of iron ions from chloride solutions using cellulose triacetate matrix inclusion membranes with an ionic liquid carrier‡
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Transport of iron ions from chloride solutions using cellulose triacetate matrix inclusion membranes with an ionic liquid carrier

  • Monika Baczynska , Martyna Rzelewska , Magdalena Regel-Rosocka EMAIL logo und Maciej Wisniewski
Veröffentlicht/Copyright: 1. Februar 2016
Veröffentlichen auch Sie bei De Gruyter Brill

In this study, liquid membranes denoted as polymer inclusion membranes (PIMs) consisting of cellulose triacetate (CTA) as a polymer matrix, o-nitrophenyl octyl ether (NPOE) as a plasticizer and phosphonium ionic liquids, trihexyltetradecylphosphonium chloride (Cyphos® IL 101) and trihexyltetradecylphosphonium bis(2,4,4-trimethylpentyl)phosphinate (Cyphos® IL 104), as carriers of metal ions were developed. The transport of Fe(II) and Fe(III) from chloride aqueous solutions across PIMs was investigated. It is shown that these phosphonium ionic liquids are effective carriers of Fe(III) ions through PIMs. While, for Fe(II), the highest value of extraction efficiency and recovery factor after 72 h does not exceed 40 %, by contrast, the values of these parameters for Fe(III) transport ranged from 60 % to almost 100 %. Additionally, the results indicate the transport rate to be strongly influenced by the amount of carrier in the membrane. The highest initial flux of Fe(III) and permeability coefficient are noted for the membrane containing 40 mass % Cyphos® IL 101. However, it is shown that the transport of Fe(III) increases as the carrier content is increased then decreases at a content of the carrier equal to 40 mass %. It appears that the Fe(III)-carrier complex decomposes with difficulty at the interface of the membrane-receiving phase, hence leading to low values of recovery factor Fe(III).


Presented at the 42nd International Conference of SSCHE, High Tatras, Slovakia, May 25–29, 2015


Acknowledgements.

Acknowledgements. Monika Baczynska received financial support under the project “Engineer of the Future. Improving the didactic potential of the Poznan University of Technology” – POKL.04.03.00-00-259/12, implemented within the Human Capital Operational Programme co-financed by the European Union within the European Social Fund. This work was supported by grant no. 03/32/DS-PB/0501.

References

Alguacil, F. J., & Alonso, M. (2000). Iron(III) transport using a supported liquid membrane containing Cyanex 921. Hydrometallurgy, 58, 81–88. DOI: 10.1016/s0304-386x(00) 00133-x.10.1016/s0304-386x(00) 00133-xSuche in Google Scholar

Alguacil, F. J., Alonso, M., Lopez, F. A., & Lopez-Delgado, A. (2010). Pseudo-emulsion membrane strip dispersion (PEMSD) pertraction of chromium(VI) using Cyphos IL 101 ionic liquid as carrier. Environmental Science & Technology, 44, 7504–7508. DOI: 10.1021/es101302b.10.1021/es101302bSuche in Google Scholar PubMed

Arias, A., Saucedo, I., Navarro, R., Gallardo, V., Martinez, M., & Guibal, E. (2011). Cadmium(II) recovery from hydrochloric acid solutions using Amberlite XAD-7 impregnated with a tetraalkyl phosphonium ionic liquid. Reactive and Functional Polymers, 71, 1059–1070. DOI: 10.1016/j.reactfunctpolym.2011.07.008.10.1016/j.reactfunctpolym.2011.07.008Suche in Google Scholar

Baczyńska, M., & Regel-Rosocka, M. (2013). Phosphonium ionic liquids as carriers of metal ions. Przemysł Chemiczny, 92, 1574–1576.Suche in Google Scholar

Baczyńska, M., Regel-Rosocka, M., Nowicki, M., & Wiśniewski, M. (2015). Effect of the structure of the polymer inclusion membranes on Zn(II) transport from chloride aqueous solution. Journal of Applied Polymer Science, 132, 42319. DOI: 10.1002/app.42319.10.1002/app.42319Suche in Google Scholar

Cytec Industries (2008). Cyanex 272 extractant. Retreived June 10, 2015, from http://www. cytec.com/sites/default/files/datasheets/CYANEX%20272% 20Brochure.pdfSuche in Google Scholar

Fontàs, C, Tayeb, R., Tingry, S., Hidalgo, M., & Seta, P. (2005). Transport of platinum(IV) through supported liquid membrane (SLM) and polymeric plasticized membrane (PPM). Journal of Membrane Science, 263, 96–102. DOI: 10.1016/j.memsci.2005.04.008.10.1016/j.memsci.2005.04.008Suche in Google Scholar

Förch, R., Schönherr, H., Tobias, A., & Jenkins, A. (2009). Surface design: Applications in bioscience and nanotechnology. Weinheim, Germany: Wiley.10.1002/9783527628599Suche in Google Scholar

Guibal, E., Campos Gavilan, K., Bunio, P., Vincent, T., & Trochimczuk, A. (2008). Cyphos IL 101 (tetradecyl(trihexyl) phosphonium chloride) immobilized in biopolymer capsules fore Hg(II) recovery from HCl solutions. Separation Science and Technology, 43, 2406–2433. DOI: 10.1080/01496390802 118970.10.1080/01496390802 118970Suche in Google Scholar

Inès, M., Almeida, G. S., Catrall, R. W., & Kolev, S. D. (2012). Recent trends in extraction and transport of metal ion using polymer inclusion membrane (PIMs). Journal of Membrane Science, 415-416, 9–23. DOI: 10.1016/j.memsci.2012.06.006.10.1016/j.memsci.2012.06.006Suche in Google Scholar

Kogelnig, D., Regelsberger, A., Stojanovic, A., Jirsa, F., Krachler, R., & Keppler, B. K. (2011). A polymer inclusion membrane based on the ionic liquid trihexyl(tetradecyl)-phosphonium chloride and PVC for solid–liquid extraction of Zn(II) from hydrochloric acid solution. Monatshefte für Chemie - Chemical Monthly, 142, 769–772. DOI: 10.1007/s00706-011-0530-6.10.1007/s00706-011-0530-6Suche in Google Scholar

Nghiem, L. D., Mornane, P., Potter, I. D., Perera, J. M., Catrall, R. W., & Kolev, S. D. (2006). Extraction and transport of metal ions and small organic compounds using polymer inclusion membranes (PIMs). Journal of Membrane Science, 281, 7–41. DOI: 10.1016/j.memsci.2006.03.035.10.1016/j.memsci.2006.03.035Suche in Google Scholar

Onac, C., Korkmaz Alpoguz, H., Akcylen, E., & Yilmaz, M. (2013). Facilitated transport of Cr(VI) through polymer inclusion membrane system containing calix[4]arene derivative as carrier agent. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 50, 1013–1021. DOI: 10.1080/10601325.2013.792205.10.1080/10601325.2013.792205Suche in Google Scholar

Pośpiech, B., Walkowiak, W., & Woźniak, M. J. (2005). Application of TBP in selective removal of iron(III) in solvent extraction and transport through polymer inclusion membranes processes. Physicochemical Problems of Mineral Processing, 39, 89–98.Suche in Google Scholar

Principe, F., & Demopoulous, G. P. (2004). Comparative study of iron(III) separation from zinc sulphate–sulphuric acid solutions using the organophosphorus extractants, OPAP and D2EHPA: Part I: Extraction. Hydrometallurgy, 74, 93–102. DOI: 10.1016/j.hydromet.2004.01.004.10.1016/j.hydromet.2004.01.004Suche in Google Scholar

Regel-Rosocka, M., & Szymanowski, J. (2005). Iron(II) transfer to the organic phase during zinc(II) extraction from spent pickling solutions with tributyl phosphate. Solvent Extraction and Ion Exchange, 23, 411–424. DOI: 10.1081/sei-200056538.10.1081/sei-200056538Suche in Google Scholar

Regel-Rosocka, M., & Wiśniewski, M. (2011). Selective removal of zinc(II) from spent pickling solution in the presence of iron ions with phosphonium ionic liquid Cyphos IL 101. Hydrometallurgy, 110, 85–90. DOI: 10.1016/j.hydromet.2011.08. 012.10.1016/j.hydromet.2011.08.012Suche in Google Scholar

Regel-Rosocka, M., Nowak, Ł., & Wiśniewski, M. (2012). Removal of zinc(II) and iron from chloride solutions with phosphonium ionic liquids. Separation and Purification Technology, 97, 158–163. DOI: 10.1016/j.seppur.2012.01.035.10.1016/j.seppur.2012.01.035Suche in Google Scholar

Turanov, A. N., Karndashev, V. K., & Baulin, V. E. (2008). Effect of ionic liquids on the extraction of rare-earth elements by bidentate neutral organophosphorus compounds from chloride solutions. Russian Journal of Inorganic Chemistry, 53, 970–975. DOI: 10.1134/s0036023608060272.10.1134/s0036023608060272Suche in Google Scholar

Ugur, A., Sener, I., Hol, A., Alpoguz, H. K., & Elci, L. (2014). Facilitated transport of Zn(II) and Cd(II) ions through polymer inclusion membranes immobilized with a calix[4]resorcinarene derivative. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 51, 611–618. DOI: 10.1080/10601325.2014.924833.10.1080/10601325.2014.924833Suche in Google Scholar

Vàzquez, M. I., Romero, V, Fontàs, C, Anticó, E., & Benavente, J. (2014). Polymer inclusion membranes (PIMs) with the ionic liquid (IL) Aliquat 336 as extractant: Effect of base polymer and IL concentration on their physical-chemical and elastic characteristics. Journal of Membrane Science, 455, 312–319. DOI: 10.1016/j.memsci.2013.12.072.10.1016/j.memsci.2013.12.072Suche in Google Scholar

Received: 2015-6-15
Revised: 2015-8-17
Accepted: 2015-8-18
Published Online: 2016-2-1
Published in Print: 2016-1-1

© 2015 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Erratum
  2. Erratum to “Arzugul Muslim, Dilnur Malik, Mehriban Hojiahmat: RAFT polymerization of linear ABC triblock copolymer PtBA-b-PS-b-P2VP and regulation of its hierarchical self-assembly structure in solution”, Chemical Papers 69 (11) 1512-1518 (2015)*
  3. Original Paper
  4. Nanoscale lanthanum oxide catalysts for self-condensation of acetone: preparation via self-assembly on anodic aluminum oxide, structure, and properties
  5. Original Paper
  6. Measuring the three forms of ellagic acid: suitability of extraction solvents
  7. Original Paper
  8. Relationship between acidification factors and methylene blue uptake by Ca-bentonite: optimisation and kinetic study
  9. Original Paper
  10. Reactivity of palladium nanoparticles supported on a microemulsion-based organogel network in supercritical carbon dioxide
  11. Original Paper
  12. Transport of iron ions from chloride solutions using cellulose triacetate matrix inclusion membranes with an ionic liquid carrier
  13. Original Paper
  14. Effect of active acidic compounds on storage stability of coker naphtha
  15. Original Paper
  16. Plant-derived surfactants as an alternative to synthetic surfactants: surface and antioxidant activities
  17. Original Paper
  18. Interaction of metallic zirconium and its alloys Zry-2 and E110 with molten eutectic salt of LiF–NaF–KF containing zirconium fluoride components
  19. Original Paper
  20. Assessment of two prop-2-enamide-based polyelectrolytes as property enhancers in aqueous bentonite mud
  21. Original Paper
  22. A novel triphenylamine-based dye sensitizer supported on titania nanoparticles and the effect of titania fabrication on its optical properties
  23. Original Paper
  24. Synthesis of Fe–Ni–Ce trimetallic catalyst nanoparticles via impregnation and co-precipitation and their application to dye degradation
  25. Original Paper
  26. Iron cross-linked carboxymethyl cellulose–gelatin complex coacervate beads for sustained drug delivery
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/chempap-2015-0198/pdf?lang=de
Button zum nach oben scrollen