Startseite Reactivity of palladium nanoparticles supported on a microemulsion-based organogel network in supercritical carbon dioxide‡
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Reactivity of palladium nanoparticles supported on a microemulsion-based organogel network in supercritical carbon dioxide

  • Kazumitsu Naoe EMAIL logo , Tatsuya Ando , Kenta Kawasaki und Masanao Imai
Veröffentlicht/Copyright: 1. Februar 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Palladium (Pd) nanoparticles were prepared using the phase transfer method and coated with alkylamines as stabilizing agents stably dispersed in nonpolar solvents. Spherical Pd nanoparticles with an average diameter of 4 nm and a relatively narrow size distribution were obtained using hexylamine or dodecylamine, and they were successfully incorporated in microemulsion-based gelatin organogel (OG); also, an OG network containing Pd nanoparticles was prepared via drying. For the Mizoroki–Heck cross-coupling reaction of iodobenzene with methyl acrylate in supercritical carbon dioxide, the Pd nanoparticles in the OG network exhibited much higher reactivity than those in powder state. Preparation conditions of OG (e.g., gelatin concentration) affected the apparent reactivity of the supported Pd nanoparticles. The Pd nanoparticles in the OG network with high gelatin concentration were recycled with no appreciable change of reactivity. In contrast, the reactivity of the Pd nanoparticles with low gelatin concentration decreased during recycling.


Presented at the 42nd International Conference of SSCHE, High Tatras, Slovakia, May 25–29, 2015


Acknowledgements.

The authors are grateful to Dr. Takeshi Furuya, Nanosystem Research Institute, AIST, for his support in setting up the scCO2 reactor system. This research was partially supported by a Grant-in-Aid for Scientific Research (C) (No. 21560787) from the JSPS.

References

Alonso, F., Beletskaya, I. P., & Yus, M. (2005). Non-conventional methodologies for transition-metal catalysed carbon–carbon coupling: a critical overview. Part 1: The Heck reaction. Tetrahedron, 61, 11771–11835. DOI: 10.1016/j.tet.2005. 08.054.10.1016/j.tet.2005. 08.054Suche in Google Scholar

Atkinson, P. J., Grimson, M. J., Heenan, R. K., Howe, A. M., & Robinson, B. H. (1989). Structure of microemulsion-based organo-gels. Journal of Chemical Society, Chemical Communications, 1989, 1807–1809. DOI: 10.1039/c39890001807.10.1039/c39890001807Suche in Google Scholar

Baiker, A. (1999). Supercritical fluids in heterogeneous catalysis. Chemical Reviews, 99, 453–473. DOI: 10.1021/cr970090z.10.1021/cr970090zSuche in Google Scholar PubMed

Brust, M., Walker, M., Bethell, D., Schiffrin, D. J., & Whyman, R. (1994). Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system. Journal of the Chemical Society, Chemical Communications, 1994, 801–802. DOI: 10.1039/c39940000801.10.1039/c39940000801Suche in Google Scholar

Cassol, C. C., Umpierre, A. P., Machado, G., Wolke, S. I., & Dupont, J. (2005). The role of Pd nanoparticles in ionic liquid in the Heck reaction. Journal of the American Chemical Society, 127, 3298–3299. DOI: 10.1021/ja0430043.10.1021/ja0430043Suche in Google Scholar PubMed

Chtchigrovsky, M., Lin, Y., Ouchaou, K., Chaumontet, M., Robitzer, M., Quignard, F., & Taran, F. (2012). Dramatic effect of the gelling cation on the catalytic performances of alginate-supported palladium nanoparticles for the Suzuki–Miyaura reaction. Chemistry of Materials, 24, 1505–1510. DOI: 10.1021/cm3003595.10.1021/cm3003595Suche in Google Scholar

Cuenya, B. R. (2010). Synthesis and catalytic properties of metal nanoparticles: Size, shape, support, composition, and oxidation state effects. Thin Solid Films, 518, 3127–3150. DOI: 10.1016/j.tsf.2010.01.018.10.1016/j.tsf.2010.01.018Suche in Google Scholar

Djakovitch, L., & Koehler, K. (2001). Heck reaction catalyzed by Pd-modified zeolites. Journal of the American Chemical Society, 123, 5990–5999. DOI: 10.1021/ja001087r.10.1021/ja001087rSuche in Google Scholar PubMed

Firouzabadi, H., Iranpoor, N., & Ghaderi, A. (2011). Gelatin as a bioorganic reductant, ligand and support for palladium nanoparticles. Application as a catalyst for ligand-and amine-free Sonogashira–Hagihara reaction. Organic & Biomolecular Chemistry, 9, 865–871. DOI: 10.1039/c0ob00253d.10.1039/c0ob00253dSuche in Google Scholar PubMed

Gopidas, K. R., Whitesell, J. K., & Fox, M. A. (2003). Synthesis, characterization, and catalytic applications of a palladium-nanoparticle-cored dendrimer. Nano Letters, 3, 1757–1760. DOI: 10.1021/nl0348490.10.1021/nl0348490Suche in Google Scholar

Haering, G., & Luisi, P. L. (1986). Hydrocarbon gels from water-in-oil microemulsions. The Journal of Physical Chemistry, 90, 5892–5895. DOI: 10.1021/j100280a086.10.1021/j100280a086Suche in Google Scholar

Jessop, P. G., Ikariya, T., & Noyori, R. (1999). Homogeneous catalysis in supercritical fluids. Chemical Reviews, 99, 475–494. DOI: 10.1021/cr970037a.10.1021/cr970037aSuche in Google Scholar PubMed

Jung, J. H., Kobayashi, H., van Bommel, K. J. C., Shinkai, S., & Shimizu, T. (2002). Creation of novel helical ribbon and double-layered nanotube TiO2 structures using an organogel template. Chemistry of Materials, 14, 1445–1447. DOI: 10.1021/cm011625e.10.1021/cm011625eSuche in Google Scholar

Kantaria, S., Rees, G. D., & Lawrence, M. J. (1999). Gelatin-stabilised microemulsion-based organogels: rheology and application in iontophoretic transdermal drug delivery. Journal of Controlled Release, 60, 355–365. DOI: 10.1016/s0168-3659(99)00092-9.10.1016/s0168-3659(99)00092-9Suche in Google Scholar PubMed

Li, Z. P., Gao, J., Xing, X. T., Wu, S. Z., Shuang, S. M., Dong, C., Paau, M. C., & Choi, M. M. F. (2010). Synthesis and characterization of n-alkylamine-stabilized palladium nanoparticles for electrochemical oxidation of methane. The Journal of Physical Chemistry C, 114, 723–733. DOI: 10.1021/jp907745v.10.1021/jp907745vSuche in Google Scholar

Mehnert, C. P. (1997). Palladium-grafted mesoporous MCM-41 material as heterogeneous catalyst for Heck reactions. Chemical Communications, 1997, 2215–2216. DOI: 10.1039/a705104b.10.1039/a705104bSuche in Google Scholar

Meric, P., Yu, K. M. K., & Tsang, S. C. (2004). Micelle-hosted palladium nanoparticles catalyze citral molecule hydrogenation in supercritical carbon dioxide. Langmuir, 20, 8537–8545. DOI: 10.1021/la049549s.10.1021/la049549sSuche in Google Scholar PubMed

Miyaura, N., & Suzuki, A. (1995). Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chemical Reviews, 95, 2457–2483. DOI: 10.1021/cr00039a007.10.1021/cr00039a007Suche in Google Scholar

Mondal, J., Modak, A., & Bhaumik, A. (2011). One-pot efficient Heck coupling in water catalyzed by palladium nanoparticles tethered into mesoporous organic polymer. Journal of Molecular Catalysis A: Chemical, 350, 40–48. DOI: 10.1016/j.molcata.2011.09.002.10.1016/j.molcata.2011.09.002Suche in Google Scholar

Nagayama, K., Katakura, R., Hata, T., Naoe, K., & Imai, M. (2008). Reactivity of Candida rugosa lipase in cetyltrimethylammonium bromide microemulsion–gelatin complex organogels. Biochemical Engineering Journal, 38, 274–276. DOI: 10.1016/j.bej.2007.08.015.10.1016/j.bej.2007.08.015Suche in Google Scholar

Naoe, K., Kataoka, M., & Kawagoe, M. (2010). Preparation of water-soluble palladium nanocrystals by reverse micelle method: Digestive ripening behavior of mercaptocarboxylic acids as stabilizing agent. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 364, 116–122. DOI: 10.1016/j.colsurfa.2010.05.004.10.1016/j.colsurfa.2010.05.004Suche in Google Scholar

Narayanan, R., & El-Sayed, M. A. (2003). Effect of catalysis on the stability of metallic nanoparticles: Suzuki reaction catalyzed by PVP-palladium nanoparticles. Journal of the American Chemical Society, 125, 8340–8347. DOI: 10. 1021/ja035044x.10. 1021/ja035044xSuche in Google Scholar

Negishi, E. I., & Anastasia, L. (2003). Palladium-catalyzed alkynylation. Chemical Reviews, 103, 1979–2018. DOI: 10. 1021/cr020377i.10. 1021/cr020377iSuche in Google Scholar

Nutt, M. O., Hughes, J. B., & Wong, M. S. (2005). Designing Pd-on-Au bimetallic nanoparticle catalysis for trichloroethane hydrochchlorination. Environmental Science & Technology, 39, 1346–1353. DOI: 10.1021/es048560b.10.1021/es048560bSuche in Google Scholar PubMed

Rao, C. R. K., Lakshminarayanan, V., & Trivedi, D. C. (2006). Synthesis and characterization of lower size, laurylamine protected palladium nanoparticles. Materials Letters, 60, 3165–3169. DOI: 10.1016/j.matlet.2006.02.091.10.1016/j.matlet.2006.02.091Suche in Google Scholar

Saffarzadeh-Matin, S., Kerton, F. M., Lynam, J. M., & Rayner, C. M. (2006). Formation and catalytic activity of Pd nanoparticles on silica in supercritical CO2. Green Chemistry, 8, 965–971. DOI: 10.1039/b607118j.10.1039/b607118jSuche in Google Scholar

Sagiri, S. S., Behera, B., Pal, K., & Basak, P. (2013). Lanolin-based organogels as a matrix for topical drug delivery. Journal of Applied Polymer Science, 128, 3831–3839. DOI: 10.1002/app.38590.10.1002/app.38590Suche in Google Scholar

Tanaka, H., Uenishi, M., Taniguchi, M., Tan, I., Narita, K., Kimura, M., Kaneko, K., Nishihata, Y., & Mizuki, J. (2006). The intelligent catalyst having the self-regenerative function of Pd, Rh and Pt for automotive emissions control. Catalysis Today, 117, 321–328. DOI: 10.1016/j.cattod.2006.05.029.10.1016/j.cattod.2006.05.029Suche in Google Scholar

Wikander, K., Petit, C., Holmberg, K., & Pileni, M. P. (2006). Size control and growth process of alkylamine-stabilized platinum nanocrystals: a comparison between the phase transfer and reverse micelles methods. Langmuir, 22, 4863–4868. DOI: 10.1021/la060163m.10.1021/la060163mSuche in Google Scholar PubMed

Xue, P. C., Lu, R., Li, D. M., Jin, M., Tan, C. H., Bao, C. Y., Wang, Z. M., & Zhao, Y. Y. (2004). Novel CuS nanofibers using organogel as a template: controlled by binding sites. Langmuir, 20, 11234–11239. DOI: 10.1021/la048582b.10.1021/la048582bSuche in Google Scholar PubMed

Yang, L., Guihen, E., Holmes, J. D., Loughran, M., O’Sullivan, G. P., & Glennon, J. D. (2005). Gold nanoparticle-modified etched capillaries for open-tubular capillary electrochromatography. Analytical Chemistry, 77, 1840–1846. DOI: 10.1021/ac048544x.10.1021/ac048544xSuche in Google Scholar PubMed

Yeung, L. K., Lee, C. T., Jr., Johnston, K. P., & Crooks, R. M. (2001). Catalysis in supercritical CO2 using dendrimer-encapsulated palladium nanoparticles. Chemical Communications, 2001, 2290–2291. DOI: 10.1039/b106594g.10.1039/b106594gSuche in Google Scholar

Zamborini, F. P., Gross, S. M., & Murray, R. W. (2001). Synthesis, characterization, reactivity, and electrochemistry of palladium monolayer protected clusters. Langmuir, 17, 481–488. DOI: 10.1021/la0010525.10.1021/la0010525Suche in Google Scholar

Zhao, X. Y., Cao, Q., Zheng, L. Q., & Zhang, G. Y. (2006). Rheological properties and microstructures of gelatin-containing microemulsion-based organogels. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 281, 67–73. DOI: 10.1016/j.colsurfa.2006.02.051.10.1016/j.colsurfa.2006.02.051Suche in Google Scholar

Received: 2015-6-7
Revised: 2015-8-3
Accepted: 2015-8-3
Published Online: 2016-2-1
Published in Print: 2016-1-1

© 2015 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Erratum
  2. Erratum to “Arzugul Muslim, Dilnur Malik, Mehriban Hojiahmat: RAFT polymerization of linear ABC triblock copolymer PtBA-b-PS-b-P2VP and regulation of its hierarchical self-assembly structure in solution”, Chemical Papers 69 (11) 1512-1518 (2015)*
  3. Original Paper
  4. Nanoscale lanthanum oxide catalysts for self-condensation of acetone: preparation via self-assembly on anodic aluminum oxide, structure, and properties
  5. Original Paper
  6. Measuring the three forms of ellagic acid: suitability of extraction solvents
  7. Original Paper
  8. Relationship between acidification factors and methylene blue uptake by Ca-bentonite: optimisation and kinetic study
  9. Original Paper
  10. Reactivity of palladium nanoparticles supported on a microemulsion-based organogel network in supercritical carbon dioxide
  11. Original Paper
  12. Transport of iron ions from chloride solutions using cellulose triacetate matrix inclusion membranes with an ionic liquid carrier
  13. Original Paper
  14. Effect of active acidic compounds on storage stability of coker naphtha
  15. Original Paper
  16. Plant-derived surfactants as an alternative to synthetic surfactants: surface and antioxidant activities
  17. Original Paper
  18. Interaction of metallic zirconium and its alloys Zry-2 and E110 with molten eutectic salt of LiF–NaF–KF containing zirconium fluoride components
  19. Original Paper
  20. Assessment of two prop-2-enamide-based polyelectrolytes as property enhancers in aqueous bentonite mud
  21. Original Paper
  22. A novel triphenylamine-based dye sensitizer supported on titania nanoparticles and the effect of titania fabrication on its optical properties
  23. Original Paper
  24. Synthesis of Fe–Ni–Ce trimetallic catalyst nanoparticles via impregnation and co-precipitation and their application to dye degradation
  25. Original Paper
  26. Iron cross-linked carboxymethyl cellulose–gelatin complex coacervate beads for sustained drug delivery
Heruntergeladen am 28.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/chempap-2015-0189/pdf?lang=de
Button zum nach oben scrollen